Question
Mathematics Question on Trigonometric Functions
If, x∈(0,π) satisfies the equation 61+sinx+sin2x....=36 ,then the value of x is_____.
A
0
B
3π
C
6π
D
4π
E
2π
Answer
6π
Explanation
Solution
Given that:
x∈(0,π) satisfies the equation 61+sinx+sin2x......=36
Then,
61+sinx+sin2x......=36
⇒61+sinx+sin2x......=62
⇒1+sinx+sin2x......=2
This represents an infinite G.P series where we can write , first term a=sinx and common ratio
r=sin2(x)
The sum of an infinite geometric series is given by the formula
S=1−ra
by substituting values we get
2=1−sin2xsinx
⇒2−2sin2x−sinx=0
⇒2sin2x+sinx−2=0
⇒(2sinx−1)(sinx+2)=0
Therefore on solving the above expression we get
x=6π (_Ans.)