Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If, x(0,π)x∈(0,π) satisfies the equation 61+sinx+sin2x....=366^{1+sinx+sin^2x....}=36 ,then the value of xx is_____.

A

00

B

π3\dfrac{\pi}{3}

C

π6\dfrac{\pi}{6}

D

π4\dfrac{\pi}{4}

E

π2\dfrac{\pi}{2}

Answer

π6\dfrac{\pi}{6}

Explanation

Solution

Given that:

x(0,π)x∈(0,π) satisfies the equation 61+sinx+sin2x......=366^{1+sinx+sin^2x......}=36

Then,

61+sinx+sin2x......=366^{1+sinx+sin^2x......}=36

61+sinx+sin2x......=62⇒6^{1+sinx+sin^2x......}=6^2

1+sinx+sin2x......=2⇒1+sinx+sin^2x......=2

This represents an infinite G.P series where we can write , first term a=sinxa =sinx and common ratio

r=sin2(x) r= sin^2(x)

The sum of an infinite geometric series is given by the formula

S=a1rS= \dfrac{a}{1-r}

by substituting values we get

2=sinx1sin2x2=\dfrac{sinx}{1-sin^{2}x}

22sin2xsinx=0⇒2-2sin^{2}x-sinx=0

2sin2x+sinx2=0⇒2sin^{2}x+sinx-2=0

(2sinx1)(sinx+2)=0⇒(2sinx-1)(sinx+2)=0

Therefore on solving the above expression we get

x=π6x=\dfrac{\pi}{6} (_Ans.)