Solveeit Logo

Question

Question: If x \> 0 and g is a bounded function, then \(\lim _ { n \rightarrow \infty }\) \(\frac{f(x)e^{nx}...

If x > 0 and g is a bounded function, then

limn\lim _ { n \rightarrow \infty } f(x)enx+g(x)enx+1\frac{f(x)e^{nx} + g(x)}{e^{nx} + 1}is-

A

0

B

f(x)

C

g(x)

D

None of these

Answer

f(x)

Explanation

Solution

Q g is a bounded function

Ž value of g is finite.

limnα\lim _ { n \rightarrow \alpha ^ { - } } enx[f(x)+g(x)enx]enx[1+1/enx}\frac{e^{nx}\left\lbrack f(x) + \frac{g(x)}{e^{nx}} \right\rbrack}{e^{nx}\lbrack 1 + 1/e^{nx}\}} = f(x)+g(x)α1+1α\frac{f(x) + \frac{g(x)}{\alpha}}{1 + \frac{1}{\alpha}}= f(x)