Question
Question: If ′′(x) > 0 and ′(1) = 0 such that g(x) = (cot<sup>2</sup> x + 2 cot x + 2), where 0 < x < π t...
If ′′(x) > 0 and ′(1) = 0 such that
g(x) = (cot2 x + 2 cot x + 2), where 0 < x < π then the interval in which g(x) is decreasing is –
A
(0, π)
B
(\frac{\pi}{2},\pi)
C
(\frac{3\pi}{4},\pi)
D
(0,\frac{3\pi}{4})
Answer
(0,\frac{3\pi}{4})
Explanation
Solution
Here, g(x) = (cot2 x + 2 cot x + 2)
⇒ g′(x) = ′(cot2 x + 2 cot x + 2)
{–2 cot x cosec2 x – 2cosec2 x}
For g(x) to be decreasing, g′(x) < 0
⇒ ′{(cot x + 1)2 + 1} · (–2 cosec2 x) (cot x + 1) < 0
⇒ ′{(cot x + 1)2 + 1} · (cot x + 1) > 0 … (i)
{as ′′(x) > 0 ⇒ ′(x) is increasing, then
′{(cot x + 1)2 + 1} > ′(1) = 0
∀ x ∈(0,43π) ∪ (43π,π)
Thus, equation (i) holds, if cot x + 1 > 0
⇒ cot x > –1 ∀ x ∈(0,43π)
Hence, (4) is the correct answer.