Solveeit Logo

Question

Question: If ƒ′′(x) > 0 and ƒ′(1) = 0 such that g(x) = ƒ (cot<sup>2</sup> x + 2 cot x + 2), where 0 < x < π t...

If ƒ′′(x) > 0 and ƒ′(1) = 0 such that

g(x) = ƒ (cot2 x + 2 cot x + 2), where 0 < x < π then the interval in which g(x) is decreasing is –

A

(0, π)

B

(\frac{\pi}{2},\pi)

C

(\frac{3\pi}{4},\pi)

D

(0,\frac{3\pi}{4})

Answer

(0,\frac{3\pi}{4})

Explanation

Solution

Here, g(x) = ƒ(cot2 x + 2 cot x + 2)

⇒ g′(x) = ƒ′(cot2 x + 2 cot x + 2)

{–2 cot x cosec2 x – 2cosec2 x}

For g(x) to be decreasing, g′(x) < 0

⇒ ƒ′{(cot x + 1)2 + 1} · (–2 cosec2 x) (cot x + 1) < 0

⇒ ƒ′{(cot x + 1)2 + 1} · (cot x + 1) > 0 … (i)

{as ƒ′′(x) > 0 ⇒ ƒ′(x) is increasing, then

ƒ′{(cot x + 1)2 + 1} > ƒ′(1) = 0

∀ x ∈(0,3π4)\left( 0,\frac{3\pi}{4} \right)(3π4,π)\left( \frac{3\pi}{4},\pi \right)

Thus, equation (i) holds, if cot x + 1 > 0

⇒ cot x > –1 ∀ x ∈(0,3π4)\left( 0,\frac{3\pi}{4} \right)

Hence, (4) is the correct answer.