Solveeit Logo

Question

Question: If we have \(x={{e}^{t}}\sin t,y={{e}^{t}}\cos t\) are parametric equations, then \(\dfrac{{{d}^{2}}...

If we have x=etsint,y=etcostx={{e}^{t}}\sin t,y={{e}^{t}}\cos t are parametric equations, then d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} at (1,1) is equal to:
(a) 12-\dfrac{1}{2}
(b) 14-\dfrac{1}{4}
(c) 0
(d) 12\dfrac{1}{2}

Explanation

Solution

Hint: Get the values of dydx\dfrac{dy}{dx} and dydt\dfrac{dy}{dt} using the ‘u.v’ rule of derivative and use the relation dydx=dydtdxdt\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}} . u.v for two functions in product is given as ddxu.v=udvdx+vdudx\dfrac{d}{dx}u.v=u\dfrac{dv}{dx}+v\dfrac{du}{dx}
d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} can be calculated by the relation d2ydx2=ddx(dydx)=ddt(dydx)dtdx\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)\dfrac{dt}{dx} . Use the following identities to get the answer as ddxex=ex,ddxcosx=sinx\dfrac{d}{dx}{{e}^{x}}={{e}^{x}},\dfrac{d}{dx}\cos x=-\sin x and ddxsinx=cosx\dfrac{d}{dx}\sin x=\cos x .Use the trigonometric identity of tan(AB)\tan \left( A-B \right) which is given as
tan(AB)=tanAtanB1+tanAtanB\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}

Complete step-by-step solution -
We are given values of variables xx and yy in term of variable ‘t’ as
x=etsint.........(i) y=etcost.........(ii) \begin{aligned} & x={{e}^{t}}\sin t.........\left( i \right) \\\ & y={{e}^{t}}\cos t.........\left( ii \right) \\\ \end{aligned}
And hence, with the help of above equations, we need to calculate the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} at (1, 1). As we know d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} is the derivative of dydx\dfrac{dy}{dx} i.e. d2ydx2=ddx(dydx)..............(iii)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)..............\left( iii \right)
And we know the relation dydx\dfrac{dy}{dx} can be calculated by evaluating the terms dydt\dfrac{dy}{dt} and dxdt\dfrac{dx}{dt} from the equation(i) and (ii) and use the following relation among them. So, we have
dydx=(dydt)(dxdt)..........(iv)\dfrac{dy}{dx}=\dfrac{\left( \dfrac{dy}{dt} \right)}{\left( \dfrac{dx}{dt} \right)}..........\left( iv \right)
So let us calculate the values of dxdt\dfrac{dx}{dt} and dydt\dfrac{dy}{dt} , by differentiating the equation (i) and (ii).
So, value of dydt\dfrac{dy}{dt} can be calculated from equation(i) as
dxdt=ddt(etsint).................(v)\dfrac{dx}{dt}=\dfrac{d}{dt}\left( {{e}^{t}}\sin t \right).................\left( v \right)
As et{{e}^{t}} and sint\sin t are in product, so we need to apply the multiplication rule of differentiation which is given as
ddx(uv)=udvdx+vdudx..........(vi)\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}..........\left( vi \right)
Hence, suppose u=etu={{e}^{t}} and v=sintv=\sin t from the equation(v) and (vi).
So, we get value of dxdt\dfrac{dx}{dt} as
dxdt=etddt(sint)+sintddtet\dfrac{dx}{dt}={{e}^{t}}\dfrac{d}{dt}\left( \sin t \right)+\sin t\dfrac{d}{dt}{{e}^{t}}
We know
ddxex=ex ddxsinx=cosx \begin{aligned} & \dfrac{d}{dx}{{e}^{x}}={{e}^{x}} \\\ & \dfrac{d}{dx}\sin x=\cos x \\\ \end{aligned}
Hence, we get
dxdt=etcost+sint(et) dxdt=etcost+etsint............(vii) \begin{aligned} & \dfrac{dx}{dt}={{e}^{t}}\cos t+\sin t\left( {{e}^{t}} \right) \\\ & \dfrac{dx}{dt}={{e}^{t}}\cos t+{{e}^{t}}\sin t............\left( vii \right) \\\ \end{aligned}
Similarly, we can calculate dydt\dfrac{dy}{dt} by differentiating equation(ii) with respect to ‘t’. So, we get
dydt=ddt(etcost)\dfrac{dy}{dt}=\dfrac{d}{dt}\left( {{e}^{t}}\cos t \right)
Now, using the equation(vi), where taking u and v as et{{e}^{t}} and cost\cos t .So, we get
ddt(etcost)=etddtcost+costddtet\dfrac{d}{dt}\left( {{e}^{t}}\cos t \right)={{e}^{t}}\dfrac{d}{dt}\cos t+\cos t\dfrac{d}{dt}{{e}^{t}}
We know
ddxcosx=sinx\dfrac{d}{dx}\cos x=-\sin x and ddxex=ex\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}
So, we get
dydt=et(sint)+etcost dydt=etsint+etcost..........(viii) \begin{aligned} & \dfrac{dy}{dt}={{e}^{t}}\left( -\sin t \right)+{{e}^{t}}\cos t \\\ & \dfrac{dy}{dt}=-{{e}^{t}}\sin t+{{e}^{t}}\cos t..........\left( viii \right) \\\ \end{aligned}
Now, we can get values of dydx\dfrac{dy}{dx} from equation(iv), (vii) and (viii) as
dydx=dydtdxdt=etsint+etcostetcost+etsint dydx=et[sint+cost]et[sint+cost] dydx=costsintcost+sint \begin{aligned} & \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{-{{e}^{t}}\sin t+{{e}^{t}}\cos t}{{{e}^{t}}\cos t+{{e}^{t}}\sin t} \\\ & \dfrac{dy}{dx}=\dfrac{{{e}^{t}}\left[ -\sin t+\cos t \right]}{{{e}^{t}}\left[ \sin t+\cos t \right]} \\\ & \dfrac{dy}{dx}=\dfrac{\cos t-\sin t}{\cos t+\sin t} \\\ \end{aligned}
Let us divide the numerator and denominator of the above equation by cost. So, we get
dydx=costsintcostcost+sintcost dydx=1sintcost1+sintcost \begin{aligned} & \dfrac{dy}{dx}=\dfrac{\dfrac{\cos t-\sin t}{\cos t}}{\dfrac{\cos t+\sin t}{\cos t}} \\\ & \dfrac{dy}{dx}=\dfrac{1-\dfrac{\sin t}{\cos t}}{1+\dfrac{\sin t}{\cos t}} \\\ \end{aligned}
We know sinθcosθ=tanθ\dfrac{\sin \theta }{\cos \theta }=\tan \theta and tanπ4=1\tan \dfrac{\pi }{4}=1 .So, we can rewrite the above equation as
dydx=tanπ4tant1+(tanπ4)(tant)\dfrac{dy}{dx}=\dfrac{\tan \dfrac{\pi }{4}-\tan t}{1+\left( \tan \dfrac{\pi }{4} \right)\left( \tan t \right)}
We know the trigonometric identity of tan(AB)\tan \left( A-B \right) is given as
tan(AB)=tanAtanB1+tanAtanB\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}
Hence, we can get value of dydx\dfrac{dy}{dx} by comparing with the above relation as
dydx=tan(π4t).........(ix)\dfrac{dy}{dx}=\tan \left( \dfrac{\pi }{4}-t \right).........\left( ix \right)
Now, from the equation(iii), we get
d2ydx2=ddx(dydx)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)
Now, we can multiply and divide the RHS of the above equation by ‘dt’. So, we get
d2ydx2=ddx(dydx)dtdx d2ydx2=ddt(dydx)dtdx..........(x) \begin{aligned} & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)\dfrac{dt}{dx} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)\dfrac{dt}{dx}..........\left( \text{x} \right) \\\ \end{aligned}
Hence, we can get value of dtdx\dfrac{dt}{dx} from the equation (vii) as
dtdx=1(dxdt) dtdx=1et[sint+cost].............(xi) \begin{aligned} & \dfrac{dt}{dx}=\dfrac{1}{\left( \dfrac{dx}{dt} \right)} \\\ & \dfrac{dt}{dx}=\dfrac{1}{{{e}^{t}}\left[ \sin t+\cos t \right]}.............\left( xi \right) \\\ \end{aligned}

And value of ddt(dydx)\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right) can be calculated using the equation (ix) as
ddt(dydx)=ddt(tan(π4t))\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dt}\left( \tan \left( \dfrac{\pi }{4}-t \right) \right)
As we know
ddxtanθ=sec2θ\dfrac{d}{dx}\tan \theta ={{\sec }^{2}}\theta
Hence, we get
ddt(dydx)=sec2(π4t)×ddt(π4t) ddt(dydx)=1×sec2(π4t) ddt(dydx)=sec2(π4t).........(xii) \begin{aligned} & \dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)={{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right)\times \dfrac{d}{dt}\left( \dfrac{\pi }{4}-t \right) \\\ & \dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)=-1\times {{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right) \\\ & \dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)=-{{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right).........\left( xii \right) \\\ \end{aligned}
Now, we can get value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} from the equations (x), (xi) and (xii) as
d2ydx2=sec2(π4t)×1et[sint+cost].........(xiii)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-{{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right)\times \dfrac{1}{{{e}^{t}}\left[ \sin t+\cos t \right]}.........\left( xiii \right)
Now, we need to find d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} at (1, 1) i.e. at the values of x=1x=1 and y = 1.
Now, we know the relation
x=etsint y=etcost \begin{aligned} & x={{e}^{t}}\sin t \\\ & y={{e}^{t}}\cos t \\\ \end{aligned}
Divide both the equations, we get
xy=etsintetcost=sintcost\dfrac{x}{y}=\dfrac{{{e}^{t}}\sin t}{{{e}^{t}}\cos t}=\dfrac{\sin t}{\cos t}
Put x=1x=1 and y=1y=1 and replace sintcost\dfrac{\sin t}{\cos t} by tant\tan t using the equation
tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }
So, we get
1=tant tant=1 \begin{aligned} & 1=\tan t \\\ & \Rightarrow \tan t=1 \\\ \end{aligned}
We know tant\tan t will be equal to 1 at t=π4.t=\dfrac{\pi }{4}. So, we get value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} as
d2ydx2=sec2(π4π4)×1eπ4[sinπ4+cosπ4]\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-{{\sec }^{2}}\left( \dfrac{\pi }{4}-\dfrac{\pi }{4} \right)\times \dfrac{1}{{{e}^{\dfrac{\pi }{4}}}\left[ \sin \dfrac{\pi }{4}+\cos \dfrac{\pi }{4} \right]}
As we know sinπ4=cosπ4=12\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}
So, we get
d2ydx2=sec20×1eπ4[12+12]\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-{{\sec }^{2}}0\times \dfrac{1}{{{e}^{\dfrac{\pi }{4}}}\left[ \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \right]}
We know sec0 = 1. Hence, we get
d2ydx2=1eπ4(22) d2ydx2=22eπ4..............(xiv) \begin{aligned} & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{{{e}^{\dfrac{\pi }{4}}}\left( \dfrac{2}{\sqrt{2}} \right)} \\\ & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-\sqrt{2}}{2{{e}^{\dfrac{\pi }{4}}}}..............\left( xiv \right) \\\ \end{aligned}
Now, from the equation(i) we have
x=etsintx={{e}^{t}}\sin t
As x=1x=1 and t=π4t=\dfrac{\pi }{4} will satisfy the above equation.
So, we get
1=eπ4sinπ41={{e}^{\dfrac{\pi }{4}}}\sin \dfrac{\pi }{4}
1=eπ412 eπ4=2 \begin{aligned} & 1={{e}^{\dfrac{\pi }{4}}}\dfrac{1}{\sqrt{2}} \\\ & {{e}^{\dfrac{\pi }{4}}}=\sqrt{2} \\\ \end{aligned}
Now, we can replace eπ4{{e}^{\dfrac{\pi }{4}}} by 2\sqrt{2} in the equation (xiv) and hence, we get
d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} at (1, 1) = 222=12\dfrac{-2}{2\sqrt{2}}=\dfrac{-1}{2}
d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} at (1, 1) = 12\dfrac{-1}{2}
So, option(a) is the correct answer.

Note: Another approach for calculating d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} would be given as
d2ydx2=ddx(dydx)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)
Directly substitute dydx=tan(π4t)\dfrac{dy}{dx}=\tan \left( \dfrac{\pi }{4}-t \right) to the above expression, we get d2ydx2=ddx(tan(π4t))\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \tan \left( \dfrac{\pi }{4}-t \right) \right)
Use chain rule of differentiation, we get
d2ydx2=sec2(π4t)ddx(π4t) d2ydx2=sec2(π4t)(dtdx) \begin{aligned} & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right)\dfrac{d}{dx}\left( \dfrac{\pi }{4}-t \right) \\\ & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{\sec }^{2}}\left( \dfrac{\pi }{4}-t \right)\left( -\dfrac{dt}{dx} \right) \\\ \end{aligned}
Now, put value of dtdx\dfrac{dt}{dx} to get d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}
One may go wrong, if he/she first put x=1x=1 and y=1y=1 to the given expression and get t=π4,t=\dfrac{\pi }{4}, so, he/she will get expression as x=eπ42x=\dfrac{{{e}^{\dfrac{\pi }{4}}}}{\sqrt{2}} and y=eπ42y=\dfrac{{{e}^{\dfrac{\pi }{4}}}}{\sqrt{2}} , and hence differentiation of them is 0, and cannot be able to get d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} , which is the blunder mistake can be possible by the students. So, take care and be careful with the questions related to them.