Solveeit Logo

Question

Question: If we have \(x = {e^{i\theta }}\) and \(y = {e^{i\phi }}\) then prove that \({x^m}{y^n} + \dfrac{1}{...

If we have x=eiθx = {e^{i\theta }} and y=eiϕy = {e^{i\phi }} then prove that xmyn+1xmyn=2cos(mθ+nϕ){x^m}{y^n} + \dfrac{1}{{{x^m}{y^n}}} = 2\cos \left( {m\theta + n\phi } \right).

Explanation

Solution

Hint – In this particular type of question use the concept that in complex system eix=cosx+isinx{e^{ix}} = \cos x + i\sin x and eix=cos(x)+isin(x){e^{ - ix}} = \cos \left( { - x} \right) + i\sin \left( { - x} \right), use the concept that cos (A + B) = cos A cos B – sin A sin B so use these properties to reach the solution of the question.

Complete step-by-step solution -
Proof –
As we all know in complex system,
eix=cosx+isinx{e^{ix}} = \cos x + i\sin x and eix=cos(x)+isin(x){e^{ - ix}} = \cos \left( { - x} \right) + i\sin \left( { - x} \right)
Now it is given that, x=eiθx = {e^{i\theta }}
Now take the mth{m^{th}} power in the both sides we have,
Therefore, xm=(eiθ)m=eimθ{x^m} = {\left( {{e^{i\theta }}} \right)^m} = {e^{im\theta }}............. (1)
Therefore, xm=cos(mθ)+isin(mθ){x^m} = \cos \left( {m\theta } \right) + i\sin \left( {m\theta } \right).................(2)
And it is also given that, y=eiϕy = {e^{i\phi }}
Now take the nth{n^{th}} power in the both sides we have,
Therefore, yn=(eiϕ)n=einϕ{y^n} = {\left( {{e^{i\phi }}} \right)^n} = {e^{in\phi }}............... (3)
Therefore, yn=cos(nϕ)+isin(nϕ){y^n} = \cos \left( {n\phi } \right) + i\sin \left( {n\phi } \right)................... (4)
Now take the L.H.S of the given equation we have,
xmyn+1xmyn\Rightarrow {x^m}{y^n} + \dfrac{1}{{{x^m}{y^n}}}
This equation is also written as,
xmyn+xmyn\Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}}....................... (5)
Now from equation (1) we have,
xm=(eiθ)m=eimθ{x^m} = {\left( {{e^{i\theta }}} \right)^m} = {e^{im\theta }}
Therefore, xm=(eiθ)m=eimθ{x^{ - m}} = {\left( {{e^{i\theta }}} \right)^{ - m}} = {e^{ - im\theta }}
xm=cos(mθ)+isin(mθ){x^{ - m}} = \cos \left( { - m\theta } \right) + i\sin \left( { - m\theta } \right)
Now as we know that cos (-x) = cos x and sin (-x) = -sin x so use this property in the above equation we have,
xm=cos(mθ)isin(mθ){x^{ - m}} = \cos \left( {m\theta } \right) - i\sin \left( {m\theta } \right)............... (6)
Similarly from equation (3) we have,
yn=cos(nϕ)isin(nϕ){y^{ - n}} = \cos \left( {n\phi } \right) - i\sin \left( {n\phi } \right).................. (7)
Now substitute the value from equation (2), (4), (6) and (7) in equation (5) we have,
xmyn+xmyn=(cos(mθ)+isin(mθ))(cos(nϕ)+isin(nϕ))+(cos(mθ)isin(mθ))(cos(nϕ)isin(nϕ))\Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = \left( {\cos \left( {m\theta } \right) + i\sin \left( {m\theta } \right)} \right)\left( {\cos \left( {n\phi } \right) + i\sin \left( {n\phi } \right)} \right) + \left( {\cos \left( {m\theta } \right) - i\sin \left( {m\theta } \right)} \right)\left( {\cos \left( {n\phi } \right) - i\sin \left( {n\phi } \right)} \right)Now simplify this we have,

xmyn+xmyn=(cosmθcosnϕ+i2sinmθsinnϕ+i(cosmθsinnϕ+sinmθcosnϕ))+ (cosmθcosnϕ+i2sinmθsinnϕi(cosmθsinnϕ+sinmθcosnϕ))  \Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = \left( {\cos m\theta \cos n\phi + {i^2}\sin m\theta \sin n\phi + i\left( {\cos m\theta \sin n\phi + \sin m\theta \cos n\phi } \right)} \right) + \\\ \left( {\cos m\theta \cos n\phi + {i^2}\sin m\theta \sin n\phi - i\left( {\cos m\theta \sin n\phi + \sin m\theta \cos n\phi } \right)} \right) \\\

xmyn+xmyn=2(cosmθcosnϕ+i2sinmθsinnϕ) \Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = 2\left( {\cos m\theta \cos n\phi + {i^2}\sin m\theta \sin n\phi } \right)
Now as we know in complex, i=1i2=1i = \sqrt { - 1} \Rightarrow {i^2} = - 1 so use this in the above equation we have,
xmyn+xmyn=2(cosmθcosnϕsinmθsinnϕ)\Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = 2\left( {\cos m\theta \cos n\phi - \sin m\theta \sin n\phi } \right)
Now as we know that cos (A + B) = cos A cos B – sin A sin B so use this in the above equation we have,
xmyn+xmyn=2cos(mθ+nϕ)\Rightarrow {x^m}{y^n} + {x^{ - m}}{y^{ - n}} = 2\cos \left( {m\theta + n\phi } \right)
= R.H.S
Hence Proved.

Note – Whenever we face such types of questions the key concept we have to remember is that always recall the properties which are stated above then first consider the L.H.S of the given equation and simplify using these properties as above we will get the required result i.e. equal to R.H.S.