Solveeit Logo

Question

Question: If we have vetor \[\overrightarrow{a}=i-j+7k\] and vector \[\overrightarrow{b}=5i-j+\lambda k\], the...

If we have vetor a=ij+7k\overrightarrow{a}=i-j+7k and vector b=5ij+λk\overrightarrow{b}=5i-j+\lambda k, then find the value of λ\lambda , so that a+b\overrightarrow{a}+\overrightarrow{b} and ab\overrightarrow{a}-\overrightarrow{b} are perpendicular vectors.

Explanation

Solution

We are given two vectors a=ij+7k\overrightarrow{a}=i-j+7k and b=5ij+λk\overrightarrow{b}=5i-j+\lambda k first we will calculate the value of a+b\overrightarrow{a}+\overrightarrow{b} and ab\overrightarrow{a}-\overrightarrow{b}, which will be a+b=6i2j+(7+λ)k\overrightarrow{a}+\overrightarrow{b}=6i-2j+(7+\lambda )k and ab=4i+(7λ)k\overrightarrow{a}-\overrightarrow{b}=-4i+(7-\lambda )k
Now it’s given that a+b\overrightarrow{a}+\overrightarrow{b} and ab\overrightarrow{a}-\overrightarrow{b} are perpendicular vectors.it means we can write their dot product will be 0, so (a+b).(ab)=(6i2j+(7+λ)k).(4i+(7λ)k)=0(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})=(6i-2j+(7+\lambda )k).(-4i+(7-\lambda )k)=0 and on solving this equation we will get the value of ab=4i+(7λ)k\overrightarrow{a}-\overrightarrow{b}=-4i+(7-\lambda )k

Complete step-by-step solution:
Given two vectors a=ij+7k\overrightarrow{a}=i-j+7k and b=5ij+λk\overrightarrow{b}=5i-j+\lambda k we are asked to find value of λ\lambda , given condition is that a+b\overrightarrow{a}+\overrightarrow{b} and ab\overrightarrow{a}-\overrightarrow{b} are perpendicular vectors, which means dot product of a+b\overrightarrow{a}+\overrightarrow{b} and ab\overrightarrow{a}-\overrightarrow{b} is 0. So, for that we first have to calculate value of a+b\overrightarrow{a}+\overrightarrow{b} and ab\overrightarrow{a}-\overrightarrow{b}
While calculating a+b\overrightarrow{a}+\overrightarrow{b} we will add ii components together, jjcomponents together and similarly kk components together which results into a+b=(ij+7k)+(5ij+λk)=(1+5)i(1+1)j+(7+λ)k)\overrightarrow{a}+\overrightarrow{b}=(i-j+7k)+(5i-j+\lambda k)=(1+5)i-(1+1)j+(7+\lambda )k)
Which equals to a+b=6i2j+(7+λ)k\overrightarrow{a}+\overrightarrow{b}=6i-2j+(7+\lambda )k similarly we apply same procedure for calculating value of ab\overrightarrow{a}-\overrightarrow{b} , which results into.
ab=(ij+7k)(5ij+λk)=(15)i+(11)j+(7λ)k\overrightarrow{a}-\overrightarrow{b}=(i-j+7k)-(5i-j+\lambda k)=(1-5)i+(1-1)j+(7-\lambda )k
Which equals to ab=4i+(7λ)k\overrightarrow{a}-\overrightarrow{b}=-4i+(7-\lambda )k
As given dot product of a+b\overrightarrow{a}+\overrightarrow{b} and ab\overrightarrow{a}-\overrightarrow{b} is 0, applying this condition we can write as
(a+b).(ab)=(6i2j+(7+λ)k).(4i+(7λ)k)=0(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})=(6i-2j+(7+\lambda )k).(-4i+(7-\lambda )k)=0
Considering unit vector property in mind that is i.i=i2=1,j.j=j2=1,k.k=k2=1i.i={{i}^{2}}=1,j.j={{j}^{2}}=1,k.k={{k}^{2}}=1
And i.j=0,i.k=0,j.k=0i.j=0,i.k=0,j.k=0 (because unit vectors components are perpendicular to each other that’s why their dot product is 0)
Solving it and considering this property i.j=0,i.k=0,j.k=0i.j=0, i.k=0, j.k=0 we get our expression as 6×(4)i2+(2)×0j2+(7+λ)(7λ)k2=06\times (-4){{i}^{2}}+(-2)\times 0{{j}^{2}}+(7+\lambda )(7-\lambda ){{k}^{2}}=0
Now putting this property i.i=i2=1,j.j=j2=1,k.k=k2=1i.i={{i}^{2}}=1,j.j={{j}^{2}}=1,k.k={{k}^{2}}=1
Our expression will look like
6×(4)+(2)×0+(7+λ)(7λ)=06\times (-4)+(-2)\times 0+(7+\lambda )(7-\lambda )=0
Which on solving looks like 6×(4)+(7+λ)(7λ)=06\times (-4)+(7+\lambda )(7-\lambda )=0
(applying formula (a+b)(ab)=a2b2(a+b)(a-b)={{a}^{2}}-{{b}^{2}})
On further solving we get 24+0+49λ2=0-24+0+49-{{\lambda }^{2}}=0
Now expression will look like λ2=25{{\lambda }^{2}}=25
Hence value of λ\lambda is 5 and -5.

Note: We can also solve it directly by taking dot product of a+b\overrightarrow{a}+\overrightarrow{b} and ab\overrightarrow{a}-\overrightarrow{b} at initially
(a+b).(ab)(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b}) which results to (a+b).(ab)=a2a.b+b.ab2(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})={{a}^{2}}-a.b+b.a-{{b}^{2}}
Now we know that a.b=b.aa.b=b.a it means (a+b).(ab)=a2b2(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})={{a}^{2}}-{{b}^{2}}
Given a=ij+7k\overrightarrow{a}=i-j+7k and b=5ij+λk\overrightarrow{b}=5i-j+\lambda k
So a2=12+12+72=1+1+49=51{{a}^{2}}={{1}^{2}}+{{1}^{2}}+{{7}^{2}}=1+1+49=51 and similarly b2=52+12+λ2=25+1+λ2=26+λ2{{b}^{2}}={{5}^{2}}+{{1}^{2}}+{{\lambda }^{2}}=25+1+{{\lambda }^{2}}=26+{{\lambda }^{2}}
(a+b).(ab)=a2b2=0(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})={{a}^{2}}-{{b}^{2}}=0 and on solving we again get the same result λ\lambda is 5 and -5