Solveeit Logo

Question

Question: If we have two lines \[2\left( \sin a+\sin b \right)x-2\sin \left( a-b \right)y=3\] and \[2\left( \c...

If we have two lines 2(sina+sinb)x2sin(ab)y=32\left( \sin a+\sin b \right)x-2\sin \left( a-b \right)y=3 and 2(cosa+cosb)x+2cos(ab)y=52\left( \cos a+\cos b \right)x+2\cos \left( a-b \right)y=5 which are perpendicular, then sin2a+sin2b=\sin 2a+\sin 2b=.
(A). sin(ab)2sin(a+b)=sin(2a)+sin(2b)\sin \left( a-b \right)-2\sin \left( a+b \right)=\sin \left( 2a \right)+\sin \left( 2b \right)
(B). sin2(ab)2sin(a+b)=sin(2a)+sin(2b)\sin 2\left( a-b \right)-2\sin \left( a+b \right)=\sin \left( 2a \right)+\sin \left( 2b \right)
(C). 2sin(ab)sin(a+b)=sin(2a)+sin(2b)2\sin \left( a-b \right)-\sin \left( a+b \right)=\sin \left( 2a \right)+\sin \left( 2b \right)
(D). sin2(ab)sin(a+b)=sin(2a)+sin(2b)\sin 2\left( a-b \right)-\sin \left( a+b \right)=\sin \left( 2a \right)+\sin \left( 2b \right)

Explanation

Solution

Hint: Here you have 2 line equations of form ax+by=cax+by=c. Find the slope of the line by using geometry formulas. After getting both the slopes, use the condition of perpendicularly here. Slope of a line ax+by+c=0ax+by+c=0 is given by ab\dfrac{-a}{b}. Condition of perpendicularity of 2 lines of slope m, n is m.n = -1.

Complete step-by-step solution -
First line equation given in the question is:
2(sina+sinb)x2sin(ab)y=3\Rightarrow 2\left( \sin a+\sin b \right)x-2\sin \left( a-b \right)y=3
We know that the slope of the line ax+by=cax+by=c is ab\dfrac{-a}{b}.
By applying this here, assume the slope of this line is m.
By the above, we can say the value of m to be as:
m=2(sina+sinb)2sin(ab)\Rightarrow m=\dfrac{-2\left( \sin a+\sin b \right)}{-2\sin \left( a-b \right)} ------ (1)
Second line equation given in question is written as follows:
2(cosa+cosb)x+2cos(ab)y=5\Rightarrow 2\left( \cos a+\cos b \right)x+2\cos \left( a-b \right)y=5
Let us assume the slope of the above line to be as n.
n=2(cosa+cosb)2cos(ab)\Rightarrow n=\dfrac{-2\left( \cos a+\cos b \right)}{2\cos \left( a-b \right)} ------ (2)
If 2 lines of slope m, n are perpendicular, we get:
m.n=1\Rightarrow m.n=-1 ------ (3) (By condition of perpendicularity)
By multiplying equation (1) and equation (2), we get it as:
2(sina+sinb)2sin(ab)×2(cosa+cosb)2cos(ab)=1\Rightarrow \dfrac{-2\left( \sin a+\sin b \right)}{-2\sin \left( a-b \right)}\times \dfrac{-2\left( \cos a+\cos b \right)}{2\cos \left( a-b \right)}=-1
By cancelling common terms and do cross multiplication we get:
2(sina+sinb)(cosa+cosb)=2sin(ab)cos(ab)\Rightarrow 2\left( \sin a+\sin b \right)\left( \cos a+\cos b \right)=2\sin \left( a-b \right)\cos \left( a-b \right)
By simplify the left hand side, we get it as follows:
2sinacosa+2sinbcosb+2sinacosb+2cosasinb=2sin(ab)cos(ab)\Rightarrow 2\sin a\cos a+2\sin b\cos b+2\sin a\cos b+2\cos a\sin b=2\sin \left( a-b \right)\cos \left( a-b \right)
By knowledge of trigonometry, we know the formula as:
2sinxcosx=sin2x\Rightarrow 2\sin x\cos x=\sin 2x
By substituting this into our equation, we get it as:
sin2a+sin2b+2sinacosb+2cosasinb=sin2(ab)\Rightarrow \sin 2a+\sin 2b+2\sin a\cos b+2\cos a\sin b=\sin 2\left( a-b \right)
By taking 2 common from last two terms, we get it as:
sin2a+sin2b+2(sinacosb+cosasinb)=sin2(ab)\Rightarrow \sin 2a+\sin 2b+2\left( \sin a\cos b+\cos a\sin b \right)=\sin 2\left( a-b \right)
By substituting (sinacosb+cosasinb)\left( \sin a\cos b+\cos a\sin b \right) as sin(a+b)\sin \left( a+b \right), we get it as:
sin2a+sin2b+2sin(a+b)=sin2(ab)\Rightarrow \sin 2a+\sin 2b+2\sin \left( a+b \right)=\sin 2\left( a-b \right)
By subtracting sin2(a+b)\sin 2\left( a+b \right) on both sides, we get it as:
sin2(ab)sin2(a+b)=sin2a+sin2b\Rightarrow \sin 2\left( a-b \right)-\sin 2\left( a+b \right)=\sin 2a+\sin 2b
Therefore option (b) is the correct answer for given conditions.

Note: Be careful while calculating slope from line equation, generally students forget the “-” sign and end up getting the wrong answer. So, the “-” sign in the slope is very important we left one 2 without cancelling because we want to apply sin2x\sin 2x formula if you cancel then you get extra terms as 12\dfrac{1}{2} on both sides of equation.