Solveeit Logo

Question

Question: If we have two complex numbers \(z_1\) and \(z_2\) such that \(\left| {{z}_{1}} \right|=\left| {{z}_...

If we have two complex numbers z1z_1 and z2z_2 such that z1=z2+z1z2\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|+\left| {{z}_{1}}-{{z}_{2}} \right| then
(A). Im(z1z2)=0\operatorname{Im}\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=0
(B). Re(z1z2)=0\operatorname{Re}\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=0
(C). Re(z1z2)=Im(z1z2)\operatorname{Re}\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=\operatorname{Im}\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)
(D). None of these

Explanation

Solution

Hint: In the given expression, first of all subtract z2\left| {{z}_{2}} \right| on both the sides then take the square on both the sides. After squaring on both the sides, you will find the relation between the angles of the two complex numbers then find the ratio of two complex numbers z1z_1 and z2z_2.

Complete step-by-step solution -
Let us assume that z1=z1eiθ1{{z}_{1}}=\left| {{z}_{1}} \right|{{e}^{i{{\theta }_{1}}}}&z2=z2eiθ2{{z}_{2}}=\left| {{z}_{2}} \right|{{e}^{i{{\theta }_{2}}}}.
The relation between the complex numbers z1z_1 and z2z_2 which is given in the above problem is:
z1=z2+z1z2\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|+\left| {{z}_{1}}-{{z}_{2}} \right|
Subtractingz2\left| {{z}_{2}} \right|from both the sides we get,
z1z2=z1z2\left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|=\left| {{z}_{1}}-{{z}_{2}} \right|
Squaring on both the sides we get,
(z1z2)2=z1z22{{\left( \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right| \right)}^{2}}={{\left| {{z}_{1}}-{{z}_{2}} \right|}^{2}}
z12+z222z1z2=z12+z222z1z2cos(θ1θ2){{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}-2\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}-2\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)
From the above equation, as L.H.S should be equal to R.H.S so the coefficient of 2z1z2-2\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|must be equal on both the sides.
1=cos(θ1θ2)1=\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)
In the above equation, θ1θ_1 is the angle of a complex number z1z_1 from real axis in the argand plane and θ2θ_2 is the angle of a complex number z2z_2 from real axis in the argand plane and θ1θ2θ_1 – θ_2 is the angle between z1z_1 and z2z_2 complex numbers,
The above equation in cosine will resolve to:
θ1θ2θ_1 – θ_2 = 0
Now, ratio ofz1 z_1 and z2z_2 is:
z1z2=z1eiθ1z2eiθ2 z1z2=z1ei(θ1θ2)z2 z1z2=z1z2 \begin{aligned} & \dfrac{{{z}_{1}}}{{{z}_{2}}}=\dfrac{\left| {{z}_{1}} \right|{{e}^{i{{\theta }_{1}}}}}{\left| {{z}_{2}} \right|{{e}^{i{{\theta }_{2}}}}} \\\ & \Rightarrow \dfrac{{{z}_{1}}}{{{z}_{2}}}=\dfrac{\left| {{z}_{1}} \right|{{e}^{i\left( {{\theta }_{1}}-{{\theta }_{2}} \right)}}}{\left| {{z}_{2}} \right|} \\\ & \Rightarrow \dfrac{{{z}_{1}}}{{{z}_{2}}}=\dfrac{\left| {{z}_{1}} \right|}{\left| {{z}_{2}} \right|} \\\ \end{aligned}
When we substitute (θ1θ2)(θ_1 – θ_2) as 0 then ei(0)e^{i(0)} becomes 1 and the ratio of z1z_1 and z2z_2 is purely real.
So, we can say thatIm(z1z2)=0\operatorname{Im}\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=0.
Hence, the correct option is (a).

Note: In the above steps, we have equated z1z22{{\left| {{z}_{1}}-{{z}_{2}} \right|}^{2}} to z12+z222z1z2cos(θ1θ2){{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}-2\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right). So, we are going to show the proof of this equation.
z1z22=(z1z2)(z1z2) z1z22=z1z1+z2z2z1z2z2z1 \begin{aligned} & {{\left| {{z}_{1}}-{{z}_{2}} \right|}^{2}}=\left( {{z}_{1}}-{{z}_{2}} \right)\left( \overline{{{z}_{1}}}-\overline{{{z}_{2}}} \right) \\\ & \Rightarrow {{\left| {{z}_{1}}-{{z}_{2}} \right|}^{2}}={{z}_{1}}\overline{{{z}_{1}}}+{{z}_{2}}\overline{{{z}_{2}}}-{{z}_{1}}\overline{{{z}_{2}}}-{{z}_{2}}\overline{{{z}_{1}}} \\\ \end{aligned}
We know that zz=z2z\overline{z}={{\left| z \right|}^{2}}and
zz=z1eiθ1z2eiθ2=z1z2ei(θ1θ2)z\overline{z}=\left| {{z}_{1}} \right|{{e}^{i{{\theta }_{1}}}}\left| {{z}_{2}} \right|{{e}^{-i{{\theta }_{2}}}}=\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|{{e}^{i\left( {{\theta }_{1}}-{{\theta }_{2}} \right)}}
Substituting these values in the above equation we get,
z1z22=z12+z22z1z2ei(θ1θ2)z1z2ei(θ1θ2) z1z22=z12+z22z1z2(ei(θ1θ2)+ei(θ1θ2)) z1z22=z12+z222z1z2cos(θ1θ2) \begin{aligned} & {{\left| {{z}_{1}}-{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}-\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|{{e}^{i\left( {{\theta }_{1}}-{{\theta }_{2}} \right)}}-\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|{{e}^{-i\left( {{\theta }_{1}}-{{\theta }_{2}} \right)}} \\\ & \Rightarrow {{\left| {{z}_{1}}-{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}-\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\left( {{e}^{i\left( {{\theta }_{1}}-{{\theta }_{2}} \right)}}+{{e}^{-i\left( {{\theta }_{1}}-{{\theta }_{2}} \right)}} \right) \\\ & \Rightarrow {{\left| {{z}_{1}}-{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}-2\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right) \\\ \end{aligned}