Solveeit Logo

Question

Question: If we have the value of x as \(\pi < x< 2\pi \) then find the value of \(\dfrac{\sqrt{1+\cos x}+\sqr...

If we have the value of x as π<x<2π\pi < x< 2\pi then find the value of 1+cosx+1cosx1+cosx1cosx\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}.

Explanation

Solution

We first try to use the formula of submultiple angle. Then for the root value we take modulus and based on the value of π<x<2π\pi < x <2\pi , we take their respective sign. Then using the formula of tan(AB)=tanAtanB1+tanA.tanB\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B} we convert the equation into a single trigonometric function.

Complete step-by-step solution
We have the trigonometric submultiple angle formula of 1+cosx=2cos2x21+\cos x=2{{\cos }^{2}}\dfrac{x}{2} and also 1cosx=2sin2x21-\cos x=2{{\sin }^{2}}\dfrac{x}{2}.
We put the values in the given equation of 1+cosx+1cosx1+cosx1cosx\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}} to get
1+cosx+1cosx1+cosx1cosx=2cos2x2+2sin2x22cos2x22sin2x2\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}=\dfrac{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}+\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}-\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}
Now for the square root values we take their modulus values.
2cos2x2+2sin2x22cos2x22sin2x2=2cosx2+2sinx22cosx22sinx2=cosx2+sinx2cosx2sinx2\dfrac{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}+\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}-\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}=\dfrac{\sqrt{2}\left| \cos \dfrac{x}{2} \right|+\sqrt{2}\left| \sin \dfrac{x}{2} \right|}{\sqrt{2}\left| \cos \dfrac{x}{2} \right|-\sqrt{2}\left| \sin \dfrac{x}{2} \right|}=\dfrac{\left| \cos \dfrac{x}{2} \right|+\left| \sin \dfrac{x}{2} \right|}{\left| \cos \dfrac{x}{2} \right|-\left| \sin \dfrac{x}{2} \right|}
As it’s given π<x<2π\pi < x< 2\pi , multiplying 12\dfrac{1}{2} we get π2<x2<π\dfrac{\pi }{2}<\dfrac{x}{2}<\pi . In that range value of cosx2<0\cos \dfrac{x}{2}< 0 and value of sinx2>0\sin \dfrac{x}{2}> 0. The modulus values change to cosx2cosx2\left| \cos \dfrac{x}{2} \right|\to -\cos \dfrac{x}{2} and sinx2sinx2\left| \sin \dfrac{x}{2} \right|\to \sin \dfrac{x}{2} in the range of π2<x2<π\dfrac{\pi }{2}< \dfrac{x}{2}< \pi .
The final equation becomes cosx2+sinx2cosx2sinx2=cosx2+sinx2cosx2sinx2\dfrac{\left| \cos \dfrac{x}{2} \right|+\left| \sin \dfrac{x}{2} \right|}{\left| \cos \dfrac{x}{2} \right|-\left| \sin \dfrac{x}{2} \right|}=\dfrac{-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}}{-\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}.
Now we take the common of cosx2-\cos \dfrac{x}{2}.
So, cosx2+sinx2cosx2sinx2=cosx2(1tanx2)cosx2(1+tanx2)\dfrac{-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}}{-\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}=\dfrac{-\cos \dfrac{x}{2}\left( 1-\tan \dfrac{x}{2} \right)}{-\cos \dfrac{x}{2}\left( 1+\tan \dfrac{x}{2} \right)}.
We convert the value 1 into tanπ4\tan \dfrac{\pi }{4} and get cosx2(1tanx2)cosx2(1+1.tanx2)=tanπ4tanx21+tanπ4.tanx2\dfrac{-\cos \dfrac{x}{2}\left( 1-\tan \dfrac{x}{2} \right)}{-\cos \dfrac{x}{2}\left( 1+1.\tan \dfrac{x}{2} \right)}=\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}}.
Then we use the formula tan(AB)=tanAtanB1+tanA.tanB\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}
tanπ4tanx21+tanπ4.tanx2=tan(π4x2)\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}}=\tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right).
Therefore, the value of 1+cosx+1cosx1+cosx1cosx\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}} is tan(π4x2)\tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right).

Note: Instead of taking cosx2-\cos \dfrac{x}{2} as common we could have taken sinx2-\sin \dfrac{x}{2}. The function would have been of cotα\cot \alpha instead of tanα\tan \alpha . For any case of root value, we always need to use the modulus value if otherwise mentioned.