Solveeit Logo

Question

Question: If we have the value of x as \(0 < x < \pi \), and \(\cos x + \sin x = \dfrac{1}{2}\), then find the...

If we have the value of x as 0<x<π0 < x < \pi , and cosx+sinx=12\cos x + \sin x = \dfrac{1}{2}, then find the value of tanx\tan x?
A). (4±7)3\dfrac{{\left( { - 4 \pm \sqrt 7 } \right)}}{3}
B). (1+7)4\dfrac{{\left( {1 + \sqrt 7 } \right)}}{4}
C). (17)4\dfrac{{\left( {1 - \sqrt 7 } \right)}}{4}
(1±7)4\dfrac{{\left( { - 1 \pm \sqrt 7 } \right)}}{4}

Explanation

Solution

: In the given problem we need to find value of tanx\tan x so we will try to convert cosx+sinx=12\cos x + \sin x = \dfrac{1}{2} in terms of tangent using trigonometric identities. We will use the substitution method to solve the given question and from that, we will obtain a quadratic equation and from that, we will find the value of tanx\tan x.
Formulae used:
cos2x=1tan2x1+tan2x\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}
sin2x=2tanx1+tan2x\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}
tan2x=2tanx1tan2x\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}
The above written identities are trigonometric ratios of angle 2x2x, so will convert them to angle xx.

Complete step-by-step solution:
Given, cosx+sinx=12\cos x + \sin x = \dfrac{1}{2}
Since, we know that cos2x=1tan2x1+tan2x\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}, therefore cosx=1tan2x21+tan2x2\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}
And, sin2x=2tanx1+tan2x\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}, therefore sinx=2tanx21+tan2x2\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}
Let us substitute the value of cosx\cos x and sinx\sin x in cosx+sinx=12\cos x + \sin x = \dfrac{1}{2}
1tan2x21+tan2x2+2tanx21+tan2x2=12\therefore \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} + \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} = \dfrac{1}{2}
Let tanx2=t\tan \dfrac{x}{2} = t
1t21+t2+2t1+t2=12\Rightarrow \dfrac{{1 - {t^2}}}{{1 + {t^2}}} + \dfrac{{2t}}{{1 + {t^2}}} = \dfrac{1}{2}
Take L.C.M
1t2+2t1+t2=12\Rightarrow \dfrac{{1 - {t^2} + 2t}}{{1 + {t^2}}} = \dfrac{1}{2}
On cross-multiplication, we get
2(1t2+2t)=1+t2\Rightarrow 2\left( {1 - {t^2} + 2t} \right) = 1 + {t^2}
22t2+4t=1+t2\Rightarrow 2 - 2{t^2} + 4t = 1 + {t^2}
Shift all terms on one side
2t2+t24t2+1=0\Rightarrow 2{t^2} + {t^2} - 4t - 2 + 1 = 0
3t24t1=0\Rightarrow 3{t^2} - 4t - 1 = 0
The above written equation does not exists real factors, hence we will solve it by quadratic formula x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} substituting the values in this equation, we get
t=(4)±(4)24×3×12×3=4±16+122×3=4±282×3\Rightarrow t = \dfrac{{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4 \times 3 \times - 1} }}{{2 \times 3}} = \dfrac{{4 \pm \sqrt {16 + 12} }}{{2 \times 3}} = \dfrac{{4 \pm \sqrt {28} }}{{2 \times 3}}
t=4±2×2×72×3=2(2±7)2×3\Rightarrow t = \dfrac{{4 \pm \sqrt {2 \times 2 \times 7} }}{{2 \times 3}} = \dfrac{{2\left( {2 \pm \sqrt 7 } \right)}}{{2 \times 3}}
t=2±73\Rightarrow t = \dfrac{{2 \pm \sqrt 7 }}{3}
As 0<x<π0 < x < \pi
0<x2<π2\Rightarrow 0 < \dfrac{x}{2} < \dfrac{\pi }{2}
So, tanx2\tan \dfrac{x}{2} is positive. (In first quadrant tangent is positive)
t=tanx2=2+73\therefore t = \tan \dfrac{x}{2} = \dfrac{{2 + \sqrt 7 }}{3}
Since, we know that tan2x=2tanx1tan2x\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} therefore, tanx=2tanx21tan2x2\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}}
Now, tanx=2tanx21tan2x2=2t1t2\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}} = \dfrac{{2t}}{{1 - {t^2}}}
Let us substitute the value of tt
tanx=2(2+73)1(2+73)2=4+2731(2+7)322=4+27332(2+7)322\Rightarrow \tan x = \dfrac{{2\left( {\dfrac{{2 + \sqrt 7 }}{3}} \right)}}{{1 - {{\left( {\dfrac{{2 + \sqrt 7 }}{3}} \right)}^2}}} = \dfrac{{\dfrac{{4 + 2\sqrt 7 }}{3}}}{{1 - {{\dfrac{{\left( {2 + \sqrt 7 } \right)}}{{{3^2}}}}^2}}} = \dfrac{{\dfrac{{4 + 2\sqrt 7 }}{3}}}{{{{\dfrac{{{3^2} - \left( {2 + \sqrt 7 } \right)}}{{{3^2}}}}^2}}}
It can also be written as,
tanx=4+273×3232(2+7)2\Rightarrow \tan x = \dfrac{{4 + 2\sqrt 7 }}{3} \times \dfrac{{{3^2}}}{{{3^2} - {{\left( {2 + \sqrt 7 } \right)}^2}}}
After cancelling out 33 and expansion of (2+7)2{\left( {2 + \sqrt 7 } \right)^2}, we get
tanx=3(4+27)32(4+7+47)=3(4+27)9(11+47)=3(4+27)91147\Rightarrow \tan x = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{{3^2} - \left( {4 + 7 + 4\sqrt 7 } \right)}} = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{9 - \left( {11 + 4\sqrt 7 } \right)}} = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{9 - 11 - 4\sqrt 7 }}
tanx=3(4+27)247=3(4+27)(2+47)\Rightarrow \tan x = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{ - 2 - 4\sqrt 7 }} = \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{ - \left( {2 + 4\sqrt 7 } \right)}}
It can also be written as,
tanx=3(4+27)2+47\Rightarrow \tan x = - \dfrac{{3\left( {4 + 2\sqrt 7 } \right)}}{{2 + 4\sqrt 7 }}
Take 22 as a common from both numerator and denominator
tanx=2×3(2+7)2(1+27)\Rightarrow \tan x = - \dfrac{{2 \times 3\left( {2 + \sqrt 7 } \right)}}{{2\left( {1 + 2\sqrt 7 } \right)}}
On cancelling 22, we get
tanx=3(2+7)1+27\Rightarrow \tan x = - \dfrac{{3\left( {2 + \sqrt 7 } \right)}}{{1 + 2\sqrt 7 }}
Multiplying and dividing 1271 - 2\sqrt 7 in the above equation, we get
tanx=3(2+7)1+27×127127=3(247+72×7)12(27)2\Rightarrow \tan x = - \dfrac{{3\left( {2 + \sqrt 7 } \right)}}{{1 + 2\sqrt 7 }} \times \dfrac{{1 - 2\sqrt 7 }}{{1 - 2\sqrt 7 }} = - \dfrac{{3\left( {2 - 4\sqrt 7 + \sqrt 7 - 2 \times 7} \right)}}{{{1^2} - {{\left( {2\sqrt 7 } \right)}^2}}}
tanx=3(23714)128=3(1237)27=3×3(47)27=9(47)27\Rightarrow \tan x = - \dfrac{{3\left( {2 - 3\sqrt 7 - 14} \right)}}{{1 - 28}} = - \dfrac{{3\left( { - 12 - 3\sqrt 7 } \right)}}{{ - 27}} = - \dfrac{{3 \times 3\left( { - 4 - \sqrt 7 } \right)}}{{ - 27}} = - \dfrac{{9\left( { - 4 - \sqrt 7 } \right)}}{{ - 27}}
After cancelling out negative signs and division, we get
tanx=(47)3\Rightarrow \tan x = \dfrac{{\left( { - 4 - \sqrt 7 } \right)}}{3}
It can also be written as,
tanx=(4+73)\Rightarrow \tan x = - \left( {\dfrac{{4 + \sqrt 7 }}{3}} \right)

Note: One must know how to convert ‘tan’, ‘cot’, ‘sec’, and ‘cosec’ terms in trigonometric formulae for all the terms, especially trigonometric ratios for half-angle, double angle, tripe angles, etc. One should know in which quadrant trigonometric angle of a particular function is positive or negative. We should take care of the calculations so as to be sure of our final answer.