Solveeit Logo

Question

Question: If we have the value of x and y as \(x=2\cos t-\cos 2t,y=2\sin t-\sin 2t,\) then the value of \(\dfr...

If we have the value of x and y as x=2costcos2t,y=2sintsin2t,x=2\cos t-\cos 2t,y=2\sin t-\sin 2t, then the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} at t=π2t=\dfrac{\pi }{2} is:
(A). 12\dfrac{1}{2}
(B). 22
(C). 32\dfrac{3}{2}
(D). 32-\dfrac{3}{2}

Explanation

Solution

Hint: First of all do the single derivative of x with respect to t and single derivative of y with respect to t. Then do the derivative of the single derivate of x with respect to t and derivate the single derivate of y with respect to t. Now, divide this double derivative of y with respect to t by double derivative of x with respect to t and then put the value of t in the obtained expression as π2\dfrac{\pi }{2}.

Complete step-by-step solution -
The value of x and y given in the expression in terms of t is:
x=2costcos2t y=2sintsin2t \begin{aligned} & x=2\cos t-\cos 2t \\\ & y=2\sin t-\sin 2t \\\ \end{aligned}
Taking the derivative of x with respect to t we get,
x=2costcos2t dxdt=2sint+2sin2t \begin{aligned} & x=2\cos t-\cos 2t \\\ & \Rightarrow \dfrac{dx}{dt}=-2\sin t+2\sin 2t \\\ \end{aligned}
In the above equation, we have used the relation that the derivative of cost\cos t with respect to t is sint-\sin t.
Taking the derivative of y with respect to t we get,
y=2sintsin2t dydt=2cost2cos2t \begin{aligned} & y=2\sin t-\sin 2t \\\ & \Rightarrow \dfrac{dy}{dt}=2\cos t-2\cos 2t \\\ \end{aligned}
We are going to take the derivative of dxdt\dfrac{dx}{dt} with respect to t.
dxdt=2sint+2sin2t d2xdt2=2cost+4cos2t \begin{aligned} & \dfrac{dx}{dt}=-2\sin t+2\sin 2t \\\ & \Rightarrow \dfrac{{{d}^{2}}x}{d{{t}^{2}}}=-2\cos t+4\cos 2t \\\ \end{aligned}
We are going to take the derivative of dydt\dfrac{dy}{dt} with respect to t.
dydt=2cost2cos2t d2ydt2=2sint+4sin2t \begin{aligned} & \dfrac{dy}{dt}=2\cos t-2\cos 2t \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{t}^{2}}}=-2\sin t+4\sin 2t \\\ \end{aligned}
Now, we are going to write d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} as follows:
d2ydx2=d2ydt2d2xdt2 d2ydx2=2sint+4sin2t2cost+4cos2t \begin{aligned} & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\dfrac{{{d}^{2}}y}{d{{t}^{2}}}}{\dfrac{{{d}^{2}}x}{d{{t}^{2}}}} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2\sin t+4\sin 2t}{-2\cos t+4\cos 2t} \\\ \end{aligned}
Taking -2 as common from the numerator and denominator in the above equation we get.
d2ydx2=2sint+4sin2t2cost+4cos2t d2ydx2=sint2sin2tcost2cos2t \begin{aligned} & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2\sin t+4\sin 2t}{-2\cos t+4\cos 2t} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\sin t-2\sin 2t}{\cos t-2\cos 2t} \\\ \end{aligned}
Substituting the value of t as π2\dfrac{\pi }{2} in the above equation we get,
d2ydx2=sint2sin2tcost2cos2t d2ydx2=sinπ22sinπcosπ22cosπ \begin{aligned} & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\sin t-2\sin 2t}{\cos t-2\cos 2t} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\sin \dfrac{\pi }{2}-2\sin \pi }{\cos \dfrac{\pi }{2}-2\cos \pi } \\\ \end{aligned}
We know from the trigonometric ratios that the value of:
sinπ2=1,sinπ=0 cosπ2=0,cosπ=1 \begin{aligned} & \sin \dfrac{\pi }{2}=1,\sin \pi =0 \\\ & \cos \dfrac{\pi }{2}=0,\cos \pi =-1 \\\ \end{aligned}
Plugging these values in the above double derivative equation we get,
d2ydx2=sinπ22sinπcosπ22cosπ d2ydx2=1002(1) d2ydx2=12 \begin{aligned} & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\sin \dfrac{\pi }{2}-2\sin \pi }{\cos \dfrac{\pi }{2}-2\cos \pi } \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1-0}{0-2\left( -1 \right)} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{2} \\\ \end{aligned}
From the above solution, we have found that the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} at t=π2t=\dfrac{\pi }{2} is 12\dfrac{1}{2}.
Hence, the correct option is (a).

Note: You might think of how we have taken the derivative of sin2t\sin 2t with respect to t.
Let us assume y=sin2ty=\sin 2t. Taking derivative on both the sides we get,
dy=d(sin2t)dy=d\left( \sin 2t \right)
The answer is let us assume 2t=u2t=u. Take the derivative on both the sides we get 2dt=du2dt=du.
Now, write u in place of 2t in sin2t\sin 2t then it will look like sinu\sin u.
dy=d(sinu) dy=cosudu \begin{aligned} & dy=d\left( \sin u \right) \\\ & \Rightarrow dy=\cos udu \\\ \end{aligned}
In the above, we have taken the differentiation of sinu\sin u with respect to u.
Substituting 2dt=du2dt=du and u=2tu=2t in the above equation we get,
dy=cos2t(2dt) dy=2cos2tdt \begin{aligned} & dy=\cos 2t\left( 2dt \right) \\\ & \Rightarrow dy=2\cos 2t dt \\\ \end{aligned}
Dividing the above equation by dt we get,
dydt=2cos2t\dfrac{dy}{dt}=2\cos 2t
Hence, we have shown the derivative of sin2t\sin 2t with respect to t.