Question
Question: If we have the sum of angles \[A+B+C={{60}^{\circ }}\], then prove that \[\sec A\sec B\sec C+2\sum{\...
If we have the sum of angles A+B+C=60∘, then prove that secAsecBsecC+2∑tanAtanB=2.
Solution
Write all the terms by removing summation sign in the second term. Use: - tanθ=cosθsinθ and secθ=cosθ1 to simplify the expression. Take L.C.M and convert the product of trigonometric functions into its sum of angles form by using the identity: - cosAcosB=2cos(A−B)+cos(A+B) and sinAsinB=2cos(A−B)−cos(A+B). Finally cancel the common terms to get the answer.
Complete step-by-step solution
Here, we have been provided with the expression: -
L.H.S = secAsecBsecC+2∑tanAtanB
Removing the summation sign, we get,
L.H.S = secAsecBsecC+2(tanAtanB+tanBtanC+tanCtanA)
Using the conversion, tanθ=cosθsinθ and secθ=cosθ1, we get,
L.H.S = cosAcosBcosC1+2[cosAcosBsinAsinB+cosBcosCsinBsinC+cosCcosAsinCsinA]
Taking L.C.M in the above expression, we get,
L.H.S = cosAcosBcosC1+2(sinAsinBcosC+sinBsinCcosA+sinAsinCcosB)
Now, sinAsinBcosC=21(2sinAsinB)cosC.
Using the identity: - 2sinAsinB=cos(A−B)−cos(A+B), we get,