Solveeit Logo

Question

Question: If we have the integration as \(\int{{{\sin }^{4}}x\times {{\cos }^{4}}x\times dx=\dfrac{1}{128}\lef...

If we have the integration as sin4x×cos4x×dx=1128[axsin4x+18sin8x]+C\int{{{\sin }^{4}}x\times {{\cos }^{4}}x\times dx=\dfrac{1}{128}\left[ ax-\sin 4x+\dfrac{1}{8}\sin 8x \right]+C} then the value of ‘a’ is equal to:

Explanation

Solution

Hint: Integrate the given integral using the trigonometric identities of sin2x\sin 2x and cos2x\cos 2x given as sin2x=2sinxcosx\sin 2x=2\sin x\cos x and cos2x=cos2xsin2x=2cos2x1=12sin2x\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x=2{{\cos }^{2}}x-1=1-2{{\sin }^{2}}x. Convert the degree of the given equation as linear and hence integrate by using cosx=sinx\int{\cos x=\sin x}. Then equate with the given value and obtain the desired result.

Complete step-by-step solution -
Here, we have
sin4x×cos4x×dx=1128[axsin4x+18sin8x]+C\int{{{\sin }^{4}}x\times {{\cos }^{4}}x\times dx=\dfrac{1}{128}\left[ ax-\sin 4x+\dfrac{1}{8}\sin 8x \right]+C}
Hence, we need to solve the LHS of the above equation and compare the result with the RHS to get the value of ‘a’.
So, we can write
LHS=sin4xcos4xdxLHS=\int{{{\sin }^{4}}x\cdot {{\cos }^{4}}xdx}
LHS=(sinxcosx)4dx\Rightarrow LHS=\int{{{\left( \sin x\cos x \right)}^{4}}dx} ….........................................................(i)
Now, multiply and divide by ‘2’ in the bracket of equation (i), we get
LHS=(2sinxcosx2)4dxLHS={{\int{\left( \dfrac{2\sin x\cos x}{2} \right)}}^{4}}dx
LHS=124(2sinxcosx)4dxLHS=\dfrac{1}{{{2}^{4}}}{{\int{\left( 2\sin x\cos x \right)}}^{4}}dx
Now, we can replace 2sinxcosx2\sin x\cos x by sin2x\sin 2x using the identity sin2x=2sinxcosx\sin 2x=2\sin x\cos x from the trigonometric function.
Hence, LHS can be re-written as
LHS=124(sin2x)4dxLHS=\dfrac{1}{{{2}^{4}}}\int{{{\left( \sin 2x \right)}^{4}}dx}
LHS=124sin42xdx\Rightarrow LHS=\dfrac{1}{{{2}^{4}}}\int{{{\sin }^{4}}2xdx} ……………………………………………….(ii)
Now, we can use the identity ofcos2x\cos 2x in terms of sine function can be given as,
cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x
sin2x=1cos2x2{{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}
Here, we can replace x by 2x in the above relation and hence, we get
sin22x=1cos4x2{{\sin }^{2}}2x=\dfrac{1-\cos 4x}{2} ……………………………………………(iii)
Now, we can put value of sin22x{{\sin }^{2}}2x by using relation given in equation (iii), in the equation (ii), we get
LHS=124(sin22x)2dxLHS=\dfrac{1}{{{2}^{4}}}\int{{{\left( {{\sin }^{2}}2x \right)}^{2}}dx}
LHS=116(1cos4x2)2dxLHS=\dfrac{1}{16}\int{{{\left( \dfrac{1-\cos 4x}{2} \right)}^{2}}dx}
LHS=116×4(1cos4x)2dx=\dfrac{1}{16\times 4}\int{{{\left( 1-\cos 4x \right)}^{2}}dx}
Now, we can expand (1cos2x)2{{\left( 1-\cos 2x \right)}^{2}} by using algebraic identity (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab, we get
LHS=164(1+cos24x2cos4x)dx=\dfrac{1}{64}\int{\left( 1+{{\cos }^{2}}4x-2\cos 4x \right)dx}
LHS=164[1dx+cos24xdx2cos4xdx]=\dfrac{1}{64}\left[ \int{1dx+\int{{{\cos }^{2}}4x}dx-2\int{\cos 4xdx}} \right] …………………………………………(iv)
Now, we can replace cos22x{{\cos }^{2}}2x using the identity of cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1 in following way : -
cos2x=1+cos2x2{{\cos }^{2}}x=\dfrac{1+\cos 2x}{2}
Now, put x=4xx=4x in the above equation, we get
cos24x=1+cos8x2{{\cos }^{2}}4x=\dfrac{1+\cos 8x}{2} ………………………………………………………..(v)
Hence, put value of cos22x{{\cos }^{2}}2x from equation (v) in equation (iv), we get
LHS =164[1dx+1+cos8x2dx2cos4xdx]=\dfrac{1}{64}\left[ \int{1dx+\int{\dfrac{1+\cos 8x}{2}dx-2\int{\cos 4xdx}}} \right]
Now, we know thexn\int{{{x}^{n}}} ,cosx\int{\cos x} can be given as xndx=xn+1n+1\int{{{x}^{n}}dx=\dfrac{{{x}^{n}}+1}{n+1}} and cosxdx=sinx\int{\cos xdx=\sin x}
Hence, we can simplify LHS as
LHS=164[x0dx+12x0dx+12cos8xdx2cos4xdx]=\dfrac{1}{64}\left[ \int{{{x}^{0}}dx}+\dfrac{1}{2}\int{{{x}^{0}}dx}+\dfrac{1}{2}\int{\cos 8xdx-2\int{\cos 4xdx}} \right]
LHS=164[x+12(x)+12sin8x82sin4x4]+c=\dfrac{1}{64}\left[ x+\dfrac{1}{2}\left( x \right)+\dfrac{1}{2}\dfrac{\sin 8x}{8}-2\dfrac{\sin 4x}{4} \right]+c
LHS=164[3x2+12sin8x8sin4x2]+c=\dfrac{1}{64}\left[ \dfrac{3x}{2}+\dfrac{1}{2}\dfrac{\sin 8x}{8}-\dfrac{\sin 4x}{2} \right]+c
Now, take 12\dfrac{1}{2} as common from bracket, we get
LHS=1128[3x+sin8x8sin4x]+c=\dfrac{1}{128}\left[ 3x+\dfrac{\sin 8x}{8}-\sin 4x \right]+c
LHS=1128[3xsin4x+sin8x8]+c\Rightarrow LHS=\dfrac{1}{128}\left[ 3x-\sin 4x+\dfrac{\sin 8x}{8} \right]+c ………………………………………….(vi)
Now consider the given equation,
sin4xcos4xdx=1128[axsin4x+18sin8x]+c\int{{{\sin }^{4}}x{{\cos }^{4}}xdx=\dfrac{1}{128}\left[ ax-\sin 4x+\dfrac{1}{8}\sin 8x \right]+c}
Now, compare the above equation with equation (vi), we get
a=3a=3
Therefore, the answer is ‘3’.

Note: Another approach for finding value of ‘a’ would be that we can differentiate the given equation on both sides, and compare the coefficients. So, we can get after differentiating as : -
sin4xcos4x=1128[a4cos4x+88cos8x]{{\sin }^{4}}x{{\cos }^{4}}x=\dfrac{1}{128}\left[ a-4\cos 4x+\dfrac{8}{8}\cos 8x \right]
sin4xcos4x=1128[a4cos4x+cos8x]{{\sin }^{4}}x{{\cos }^{4}}x=\dfrac{1}{128}\left[ a-4\cos 4x+\cos 8x \right]
8(2sinxcosx)4=a4cos4x+cos8x8{{\left( 2\sin x\cos x \right)}^{4}}=a-4\cos 4x+\cos 8x
8(sin22x)2=a4cos4x+cos8x8{{\left( {{\sin }^{2}}2x \right)}^{2}}=a-4\cos 4x+\cos 8x
8(1cos4x2)2=a4cos4x+cos8x8{{\left( \dfrac{1-\cos 4x}{2} \right)}^{2}}=a-4\cos 4x+\cos 8x
2(1cos4x)2=a4cos4x+cos8x2{{\left( 1-\cos 4x \right)}^{2}}=a-4\cos 4x+\cos 8x
2(1+cos24x2cos4x)=a4cos4x+cos8x2\left( 1+{{\cos }^{2}}4x-2\cos 4x \right)=a-4\cos 4x+\cos 8x
2[1+(1cos8x2)22cos4x]=a4cos4x+8cos8x2\left[ 1+{{\left( \dfrac{1-\cos 8x}{2} \right)}^{2}}-2\cos 4x \right]=a-4\cos 4x+8\cos 8x
Now, simplify the above equation and get the value of ‘a’.
One may use another approach for finding sin4xcos4xdx\int{{{\sin }^{4}}x{{\cos }^{4}}xdx} and may get values not in terms of sin4x\sin 4x and sin8x\sin 8x. So, first we need to convert them in the form of the values given in RHS or we can simplify RHS as well. So, don’t confuse the terms. One may get value of sin4xcos4xdx\int{{{\sin }^{4}}x{{\cos }^{4}}xdx} not in sin4x\sin 4x and sin8x\sin 8x .