Solveeit Logo

Question

Question: If we have the function \(f(x)=\dfrac{2-x\cos x}{2+x\cos x}\) and \(g(x)={{\log }_{e}}x\)(x > 0) the...

If we have the function f(x)=2xcosx2+xcosxf(x)=\dfrac{2-x\cos x}{2+x\cos x} and g(x)=logexg(x)={{\log }_{e}}x(x > 0) then the value of integral π4π4g(f(x))dx\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx} is
(a) loge3{{\log }_{e}}3
(b) loge2{{\log }_{e}}2
(c) logee{{\log }_{e}}e
(d) loge1{{\log }_{e}}1

Explanation

Solution

To solve this question, firstly we will find the value of composite function, g(f(x))g(f(x)) where f(x)=2xcosx2+xcosxf(x)=\dfrac{2-x\cos x}{2+x\cos x} and g(x)=logexg(x)={{\log }_{e}}x. Then, we will substitute the value of g(f(x))g(f(x)) in integral π4π4g(f(x))dx\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx} and let the integral be equals to I. after that we will replace x by –x and add the both integral. After that, we will simplify the integral and using properties of log we will obtain the value of integral.

Complete step-by-step solution:
Now let us find g(f(x))g(f(x)).
We are given that, f(x)=2xcosx2+xcosxf(x)=\dfrac{2-x\cos x}{2+x\cos x} and g(x)=logexg(x)={{\log }_{e}}x
The, we can say that g((2xcosx2+xcosx))g\left( \left( \dfrac{2-x\cos x}{2+x\cos x} \right) \right)
So, g(f(x))=loge(2xcosx2+xcosx)g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)
So, in question we are asked to evaluate the value of integral π4π4g(f(x))dx\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}.
So, putting the value of g(f(x))=loge(2xcosx2+xcosx)g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right) in the integral π4π4g(f(x))dx\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}, we get
π4π4loge(2xcosx2+xcosx)dx\Rightarrow \int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}
So, let integral be equals to I
So, I=π4π4loge(2xcosx2+xcosx)dxI=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}…………... ( i )
Let us replace, x by – x, we get
I=π4π4loge(2(x)cosx2+(x)cosx)dxI=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-(-x)\cos x}{2+(-x)\cos x} \right)dx}
On simplifying, we get
I=π4π4loge(2+xcosx2xcosx)dxI=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}………………... ( ii )
Adding ( i ) and ( ii ), we get
I+I=π4π4loge(2xcosx2+xcosx)dx+π4π4loge(2+xcosx2xcosx)dxI+I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}
2I=π4π4loge(2xcosx2+xcosx)dx+π4π4loge(2+xcosx2xcosx)dx\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}
As limits of both integral are same, so we can add both functions too,
So, we get
2I=π4π4(loge(2xcosx2+xcosx)+loge(2+xcosx2xcosx))dx2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{\left( {{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)+{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right) \right)dx}
On simplifying, we get
2I=π4π4loge(2xcosx2+xcosx)(2+xcosx2xcosx)dx2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}, as we know that logax+logay=logaxy{{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy .
On simplifying, we get
2I=π4π4loge1dx2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}1dx}
As, loge1{{\log }_{e}}1 is constant value, so we can pull this out of integral.
So, we get
2I=loge1π4π41dx2I={{\log }_{e}}1\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{1dx}
We know that, 1.dx=x\int{1.dx=x}
So, 2I=loge1.xπ4π42I={{\log }_{e}}1.\\{x\\}_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}
On putting, upper limit as π4\dfrac{\pi }{4} and lower limit as π4-\dfrac{\pi }{4}, we get
2I=loge1.(π4(π4))2I={{\log }_{e}}1.\left( \dfrac{\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right)
On simplifying, we get
2I=loge1.(2π4)2I={{\log }_{e}}1.\left( \dfrac{2\pi }{4} \right)
I=loge1.(2π2.4)\Rightarrow I={{\log }_{e}}1.\left( \dfrac{2\pi }{2.4} \right)
Now, we know that loge1=0{{\log }_{e}}1=0, so we get
I=0I=0
Hence, option ( d ) is correct.

Note: To solve such questions, one must know how we calculate the composite function when we are given two functions because we cannot proceed without this step. Also, remember the property of definite integration which is abf(x)dx=F(a)F(b)\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)} ,where F is the integration of f ( x ) and a is lower limit and b is upper limit. One must know the properties and values of logarithmic function such as logax+logay=logaxy{{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy and loge1=0{{\log }_{e}}1=0. Try not to make any calculation error, while solving the integral.