Solveeit Logo

Question

Question: If we have the function as \[y = {\left( {\sin x} \right)^{\sin x}}\] then find \[\dfrac{{dy}}{{dx}}...

If we have the function as y=(sinx)sinxy = {\left( {\sin x} \right)^{\sin x}} then find dydx\dfrac{{dy}}{{dx}}.

Explanation

Solution

To find dydx\dfrac{{dy}}{{dx}} of y=(sinx)sinxy = {\left( {\sin x} \right)^{\sin x}} we will first take natural logarithm on both the sides then using the chain rule and product rule of differentiation we will differentiate both the side and at last we will substitute y=(sinx)sinxy = {\left( {\sin x} \right)^{\sin x}} wherever required to find the final result.

Complete step-by-step solution:
This problem deals with implicit differentiation. Implicit differentiation is done by differentiating an implicit equation with respect to variable say xx and while treating other variables as unspecified functions of xx.
We have to find dydx\dfrac{{dy}}{{dx}} of y=(sinx)sinxy = {\left( {\sin x} \right)^{\sin x}}.
For this we will take natural logarithms on both sides.
On taking natural logarithm on both the sides, we get
lny=ln[(sinx)sinx]\Rightarrow \ln y = \ln \left[ {{{\left( {\sin x} \right)}^{\sin x}}} \right]
Using the Power rule of logarithm i.e., logb(mp)=plogbm{\log _b}\left( {{m^p}} \right) = p{\log _b}m we can write
lny=sinxln(sinx)\Rightarrow \ln y = \sin x\ln \left( {\sin x} \right)
Differentiating using chain rule of differentiation i.e., ddx[f(g(x))]\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f(g(x))g(x)f\left( {{g'}\left( x \right)} \right){g'}\left( x \right) on left hand side and chain rule and product rule of differentiation i.e., ddx[f(x)g(x)]\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f(x)g(x)+g(x)f(x)f\left( x \right){g'}\left( x \right) + g\left( x \right){f'}\left( x \right) on the right hand side, we get
1ydydx=(sinx)×(1sinx×cosx)+lnsinx×(cosx)\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\sin x} \right) \times \left( {\dfrac{1}{{\sin x}} \times \cos x} \right) + \ln \sin x \times \left( {\cos x} \right)
On simplification we can
1ydydx=cosx+cosxlnsinx\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \cos x + \cos x\ln \sin x
Taking cosx\cos x common from the right hand side of the above equation, we get
1ydydx=cosx(1+lnsinx)\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \cos x\left( {1 + \ln \sin x} \right)
Multiplying both the sides by yy, we get
dydx=ycosx(1+lnsinx)\Rightarrow \dfrac{{dy}}{{dx}} = y\cos x\left( {1 + \ln \sin x} \right)
Putting y=(sinx)sinxy = {\left( {\sin x} \right)^{\sin x}}, we get
dydx=(sinx)sinxcosx(1+lnsinx)\Rightarrow \dfrac{{dy}}{{dx}} = {\left( {\sin x} \right)^{\sin x}}\cos x\left( {1 + \ln \sin x} \right)
On rearranging we can write
dydx=cosx(sinx)sinx(1+lnsinx)\Rightarrow \dfrac{{dy}}{{dx}} = \cos x{\left( {\sin x} \right)^{\sin x}}\left( {1 + \ln \sin x} \right)
Therefore, dydx\dfrac{{dy}}{{dx}} of y=(sinx)sinxy = {\left( {\sin x} \right)^{\sin x}} is cosx(sinx)sinx(1+lnsinx)\cos x{\left( {\sin x} \right)^{\sin x}}\left( {1 + \ln \sin x} \right).

Note: This is a case of differentiation of implicit function i.e., we are not able to isolate the dependent variable in an equation. Both dependent and independent variables are present in this type of function. Also, note that the technique of implicit differentiation allows one to find the derivative of yy with respect to xx without having to solve the given equation for yy.