Solveeit Logo

Question

Question: If we have the differential equation as \(\dfrac{dy}{dx}=\dfrac{x-y}{x+y}\) then \[\] A.\(2xy+{{x}...

If we have the differential equation as dydx=xyx+y\dfrac{dy}{dx}=\dfrac{x-y}{x+y} then A.$2xy+{{x}^{2}}{{y}^{2}}+xy=c$
B.{{x}^{2}}+{{y}^{2}}-x+y=c$$$$$ C. {{x}^{2}}+{{y}^{2}}-2xy=c D. ${{x}^{2}}-{{y}^{2}}-2xy=c

Explanation

Solution

We see that the given differential equation is a homogeneous differential equation whose standard substitution is y=vxy=vx.We solve the given homogeneous differential equation by putting y=vxy=vx and then using the separation of variables v,xv,x to integrate. We use the standard integration f(x)f(x)dx=lnf(x)\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\ln f\left( x \right) to proceed.

Complete step-by-step solution:
We know that a differential equation consists of differentials, functions and variables. We call a first order differential equation homogeneous if dydx=f(x,y)\dfrac{dy}{dx}=f\left( x,y \right) if f(x,y)=f(kx,ky)f\left( x,y \right)=f\left( kx,ky \right) for non-zero kRk\in R.We always solve homogeneous differential equation by standard substitutiony=vxy=vx. We are given in the question the following differential equation.
dydx=xyx+y\dfrac{dy}{dx}=\dfrac{x-y}{x+y}
Let us denotef(x,y)=xyx+yf\left( x,y \right)=\dfrac{x-y}{x+y}. For any kRk\in R we have
f(kx,ky)=kxkykx+ky=k(xy)k(x+y)=xyx+y=f(x,y)f\left( kx,ky \right)=\dfrac{kx-ky}{kx+ky}=\dfrac{k\left( x-y \right)}{k\left( x+y \right)}=\dfrac{x-y}{x+y}=f\left( x,y \right)
So the given differential equation is a homogeneous differential equation. So let us considery=vxy=vx. We differentiate both side with respect to xx to have;

& \dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx} \\\ & \Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}.....\left( 1 \right) \\\ \end{aligned}$$ We put $y=vx$ in the given differential equation to have; $$\begin{aligned} & \dfrac{dy}{dx}=\dfrac{x-vx}{x+vx} \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{1-v}{1+v}.....\left( 2 \right) \\\ \end{aligned}$$ We equate right hand sides of (1) and (2) to have; $$v+x\dfrac{dv}{dx}=\dfrac{1-v}{1+v}$$ Now we shall use separation of variables . We have $$\begin{aligned} & \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-v}{1+v}-v \\\ & \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-v-v\left( 1+v \right)}{1+v} \\\ & \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-2v-{{v}^{2}}}{1+v} \\\ & \Rightarrow \dfrac{v+1}{1-2v-{{v}^{2}}}=\dfrac{dx}{x} \\\ \end{aligned}$$ We take negative sign both sides and make complete square in the left hand side to have; $$\begin{aligned} & \Rightarrow \dfrac{v+1}{{{v}^{2}}+2v-1}dv=-\dfrac{dx}{x} \\\ & \Rightarrow \dfrac{v+1}{{{\left( v+1 \right)}^{2}}-2}dv=-\dfrac{1}{x}dx \\\ \end{aligned}$$ We integrate broth dies with the respect to the corresponding variables and have ; $$\begin{aligned} & \Rightarrow \int{\dfrac{v+1}{{{\left( v+1 \right)}^{2}}-2}dv}=\int{-\dfrac{1}{x}dx} \\\ & \Rightarrow \dfrac{1}{2}\int{\dfrac{2\left( v+1 \right)}{{{\left( v+1 \right)}^{2}}-2}dv}=-\int{\dfrac{1}{x}dx} \\\ \end{aligned}$$ We use the standard integration $\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\ln f\left( x \right)$ in both sides f the above step to have; $$\Rightarrow \dfrac{1}{2}\ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=\ln \left| x \right|+{{c}_{1}}$$ Let us have ${{c}_{2}}=\ln \left| {{c}_{1}} \right|$. We have $$\begin{aligned} & \Rightarrow \dfrac{1}{2}\ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=-\ln \left| x \right|+\ln \left| {{c}_{2}} \right| \\\ & \Rightarrow \ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=2\ln \left| \dfrac{{{c}_{2}}}{x} \right| \\\ & \Rightarrow \ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=\ln {{\left| \dfrac{{{c}_{2}}}{x} \right|}^{2}} \\\ \end{aligned}$$ We equate the arguments of respective sides to have; $$\begin{aligned} & \Rightarrow {{\left( v+1 \right)}^{2}}-2=\dfrac{c_{2}^{2}}{{{x}^{2}}} \\\ & \Rightarrow {{x}^{2}}\left( {{v}^{2}}-2v-1 \right)=c_{2}^{2} \\\ & \Rightarrow {{x}^{2}}\left( {{v}^{2}}-2v-1 \right)=c_{2}^{2} \\\ \end{aligned}$$ We put back $v=\dfrac{y}{x}$ in the above step to have; $$\begin{aligned} & \Rightarrow {{x}^{2}}\left( {{\left( \dfrac{y}{x} \right)}^{2}}+2\left( \dfrac{y}{x} \right)-1 \right)=c_{2}^{2} \\\ & \Rightarrow {{x}^{2}}\left( \dfrac{{{y}^{2}}+2xy-{{x}^{2}}}{{{x}^{2}}} \right)=c_{2}^{2} \\\ & \Rightarrow {{y}^{2}}+2xy-{{x}^{2}}=c_{2}^{2} \\\ & \Rightarrow {{x}^{2}}-{{y}^{2}}-2xy=c\left( \text{where }c=-c_{2}^{2} \right) \\\ \end{aligned}$$ **Here ${{c}_{1}},{{c}_{2}},c$ are real constants of integration. So the correct option is D.** **Note:** We note that the highest differential coefficient of a differential is called order and the highest power on the derivative when expressed in polynomial form. The given differential equation is linear because degree is 1 which makes it a linear homogeneous differential equation. We should remember the logarithmic identities $\ln \left( ab \right)=\ln a+ \ln b$ and $\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b$ while solving homogeneous differential equations.