Solveeit Logo

Question

Question: If we have the cube roots of unity as \[1,\omega ,{{\omega }^{2}}\] then prove that \(\left( 2-\omeg...

If we have the cube roots of unity as 1,ω,ω21,\omega ,{{\omega }^{2}} then prove that (2ω)(2ω2)(2ω10)(2ω11)=49\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)=49

Explanation

Solution

Hint: To find the value of the (2ω)(2ω2)(2ω10)(2ω11)\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right) , we need to derive ω10{{\omega }^{10}} and ω11{{\omega }^{11}} in the terms (zω10)\left( z-{{\omega }^{10}} \right) and (zω11)\left( z-{{\omega }^{11}} \right) and then simplify the left hand side.

Complete step-by-step solution -
Here, we are given that the cube roots of unity as 1,ω,ω21,\omega ,{{\omega }^{2}} . The equation is given as:
x31=0..............(i){{x}^{3}}-1=0..............\left( i \right)
As given in question 1,ω1,\omega and ω2{{\omega }^{2}} are the roots of this equation. Now, we will put ω\omega in place of xx as it is one of the root. After doing this, we will get following:
ω310................(ii){{\omega }^{3}}-1-0................\left( ii \right)
In the above equation, we are going to use identity a3b3=(ab)(a2+b2+ab){{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right) . Thus, applying this identity in the above equation, we will get:
(ω1)(ω2+ω+1)=0\left( \omega -1 \right)\left( {{\omega }^{2}}+\omega +1 \right)=0
In the above equation, we have got the choices either (ω1)=0\left( \omega -1 \right)=0 or (ω2+ω+1)=0\left( {{\omega }^{2}}+\omega +1 \right)=0 . Let us consider two cases
Case 1:
ω1=0 ω=1 \begin{aligned} & \omega -1=0 \\\ & \Rightarrow \omega =1 \\\ \end{aligned}
It is not possible since ω\omega is an imaginary number.
Case 2: ω2+ω+1=0.............(iii){{\omega }^{2}}+\omega +1=0.............\left( iii \right)
When we will solve this equation, we will get imaginary values of ω\omega . Also ω2+ω+1=0{{\omega }^{2}}+\omega +1=0 is an important result which we are going to use in our solution.
Now from equation (ii), we have ω31=0{{\omega }^{3}}-1=0
ω3=1................(iv)\Rightarrow {{\omega }^{3}}=1................\left( iv \right)
Now, we will multiply both sides of the equation with ω3{{\omega }^{3}} . After doing this we will get:

& {{\omega }^{3}}\times {{\omega }^{3}}={{\omega }^{3}} \\\ & {{\omega }^{6}}={{\omega }^{3}}.............\left( v \right) \\\ \end{aligned}$$ From equation (iv) and (v), we get: ${{\omega }^{6}}=1............\left( vi \right)$ Now, we will multiply with ${{\omega }^{3}}$ on both sides of the above equation. After doing this we will get: $\begin{aligned} & {{\omega }^{6}}\times {{\omega }^{3}}={{\omega }^{3}} \\\ & \Rightarrow {{\omega }^{9}}={{\omega }^{3}}............\left( vii \right) \\\ \end{aligned}$ From equation (iv) and (vii), we will get: ${{\omega }^{9}}=1.............\left( viii \right)$ Now, we will multiply both sides of the equation with $\omega $ . After doing this, we will get: ${{\omega }^{10}}=\omega .........\left( ix \right)$ We will multiply both sides of the equation (ix) with $\omega $ . After doing this we will get ${{\omega }^{11}}={{\omega }^{2}}...........\left( x \right)$ Now, we are going to put the values of ${{\omega }^{11}}$ and ${{\omega }^{10}}$ from equation (x) and (ix) into $\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)$ . After doing this we will get: $$\begin{aligned} & \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)=\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right) \\\ & \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left( 2-\omega \right)}^{2}}{{\left( 2-{{\omega }^{2}} \right)}^{2}} \\\ & \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right) \right]}^{2}} \\\ & \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ 4-2{{\omega }^{2}}-2\omega +{{\omega }^{3}} \right]}^{2}} \\\ & \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ 4-2\left( \omega +{{\omega }^{2}} \right)+{{\omega }^{3}} \right]}^{2}}................\left( xi \right) \\\ \end{aligned}$$ We know that the values of ${{\omega }^{3}}=1$ . Also, we know from equation (iii) that, $\begin{aligned} & 1+\omega +{{\omega }^{2}}=0 \\\ & \Rightarrow {{\omega }^{2}}+\omega =-1 \\\ \end{aligned}$ Using above values in equation (xi), we get $$\begin{aligned} & \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ 4-2\left( -1 \right)+1 \right]}^{2}} \\\ & \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)={{\left[ 7 \right]}^{2}} \\\ & \Rightarrow \left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)=49 \\\ \end{aligned}$$ Hence proved Note: In the equation (xi), instead of using the formula $$1+\omega +{{\omega }^{2}}=0$$ , we could have used the actual values of $\omega $ and ${{\omega }^{2}}$. The value of $\omega =\dfrac{-1+\sqrt{3}i}{2}$ and the value of ${{\omega }^{2}}=\dfrac{-1-\sqrt{3}i}{2}$ .Also, we could have solved the above question by expanding the term $$\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)\left( 2-{{\omega }^{10}} \right)\left( 2-{{\omega }^{11}} \right)$$ . The answer would still have been same.