Solveeit Logo

Question

Question: If we have the complex cube root of unity \(\omega \), then the value of \(\omega + {\omega ^{\left(...

If we have the complex cube root of unity ω\omega , then the value of ω+ω(12+38+932+27128+....)\omega + {\omega ^{\left( {\dfrac{1}{2} + \dfrac{3}{8} + \dfrac{9}{{32}} + \dfrac{{27}}{{128}} + ....} \right)}} is
(A). -1
(B). 1
(C). i - i
(D). ii

Explanation

Solution

Hint- Firstly, we will solve the given series using geometric progression formula for sum of infinite terms as S=a1r{S_\infty } = \dfrac{a}{{1 - r}} ; a being first term and r being the common ratio. After that minimize the given complex term.

Complete step-by-step solution -
It is given that ω+ω(12+38+932+27128+....)\omega + {\omega ^{\left( {\dfrac{1}{2} + \dfrac{3}{8} + \dfrac{9}{{32}} + \dfrac{{27}}{{128}} + ....} \right)}}
Now, solving series as 12+38+932+27128+....\dfrac{1}{2} + \dfrac{3}{8} + \dfrac{9}{{32}} + \dfrac{{27}}{{128}} + ....
Here, first term, a1=12{a_1} = \dfrac{1}{2} and second term, a2=38{a_2} = \dfrac{3}{8}
Now, common ratio, r=a2a1=(38)(12)=68=34r = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{{\left( {\dfrac{3}{8}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} = \dfrac{6}{8} = \dfrac{3}{4}
Sum up to \infty terms =a1r=12134=12434=1214=42=2 = \dfrac{a}{{1 - r }} = \dfrac{{\dfrac{1}{2}}}{{1 - \dfrac{3}{4}}} = \dfrac{{\dfrac{1}{2}}}{{\dfrac{{4 - 3}}{4}}} = \dfrac{{\dfrac{1}{2}}}{{\dfrac{1}{4}}} = \dfrac{4}{2} = 2
Now substituting the value of 12+38+932+27128+....\dfrac{1}{2} + \dfrac{3}{8} + \dfrac{9}{{32}} + \dfrac{{27}}{{128}} + .... as 2 we get,
ω+ω2\Rightarrow \omega + {\omega ^2}
We know that ω+ω2+1=0 \Rightarrow \omega + {\omega ^2} + 1 = 0
ω+ω2=1\Rightarrow \omega + {\omega ^2} = - 1
Hence, the value of ω+ω(12+38+932+27128+....)\omega + {\omega ^{\left( {\dfrac{1}{2} + \dfrac{3}{8} + \dfrac{9}{{32}} + \dfrac{{27}}{{128}} + ....} \right)}} is -1
\therefore Option A. -1 is the correct answer.

Note- Always remember the sum of three cube roots of unity is 0 i.e. ω+ω2+1=0\omega + {\omega ^2} + 1 = 0 . For these types of complex problems, the basic trick is to simplify the given terms for understanding the direction of question.