Solveeit Logo

Question

Question: If we have \[{{t}_{5}},\text{ }{{t}_{10}}\text{ and }{{\text{t}}_{\text{25}}}\text{ are }{{\text{5}}...

If we have t5, t10 and t25 are 5th, 10th and 25th {{t}_{5}},\text{ }{{t}_{10}}\text{ and }{{\text{t}}_{\text{25}}}\text{ are }{{\text{5}}^{\text{th}}}\text{, 1}{{\text{0}}^{\text{th}}}\text{ and 2}{{\text{5}}^{\text{th}}}\text{ } terms of AP respectively, then the value of

{{t}_{5}} & {{t}_{10}} & {{t}_{25}} \\\ 5 & 10 & 25 \\\ 1 & 1 & 1 \\\ \end{matrix} \right|$$is $\begin{aligned} & A.\text{ -40} \\\ & \text{B}\text{. 1} \\\ & C.-1 \\\ & D.\text{ 0} \\\ & \text{E}\text{. 40} \\\ \end{aligned}$
Explanation

Solution

Hint: In this question we have to find out the value of determinant. In the given determinant some elements are the terms of an AP so here we use the formula of nth{{n}^{th}}term of an AP. If aa be the first term of an AP and dd be the common difference of an AP then nth{{n}^{th}} term of an AP is given by tn=a+(n1)d{{t}_{n}}=a+(n-1)d , so first of all we have to find the values of t5,t10{{t}_{5}},{{t}_{10}} and t25{{t}_{25}} of the AP. Use the property of determinant C1C1C2{{C}_{1}}\to {{C}_{1}}-{{C}_{2}} and C2C2C3{{C}_{2}}\to {{C}_{2}}-{{C}_{3}} , and do the simplification, Once we get simplified term we have to put the value of t5=a+4d,t10=a+9d{{t}_{5}}=a+4d,{{t}_{10}}=a+9d and t25=a+24d{{t}_{25}}=a+24d After that do the algebraic operation in order to find the value of given determinant.

Complete step-by-step answer:
It is given from question that t5,t10{{t}_{5}},{{t}_{10}} and t25{{t}_{25}}are 5th,10th{{5}^{th}},{{10}^{th}} and 25th{{25}^{th}} terms of the given AP
As we know that nth{{n}^{th}} term of an AP is given by tn=a+(n1)d{{t}_{n}}=a+(n-1)d so we can write
t5=a+(51)d t5=a+4d(1) \begin{aligned} & {{t}_{5}}=a+(5-1)d \\\ & {{t}_{5}}=a+4d---------(1) \\\ \end{aligned}
Similarly, we can write
t10=a+9d(2){{t}_{10}}=a+9d-------(2)
And
t25=a+24d(3){{t}_{25}}=a+24d------(3)
Now we have given determinant

{{t}_{5}} & {{t}_{10}} & {{t}_{25}} \\\ 5 & 10 & 25 \\\ 1 & 1 & 1 \\\ \end{matrix} \right|$$ Now operating ${{C}_{1}}\to {{C}_{1}}-{{C}_{2}}$, we can write $$\begin{aligned} & \left| \begin{matrix} {{t}_{5}}-{{t}_{10}} & {{t}_{10}}-{{t}_{25}} & {{t}_{25}} \\\ 5-10 & 10-25 & 25 \\\ 1-1 & 1-1 & 1 \\\ \end{matrix} \right| \\\ & \Rightarrow \left| \begin{matrix} {{t}_{5}}-{{t}_{10}} & {{t}_{10}}-{{t}_{25}} & {{t}_{25}} \\\ -5 & -15 & 25 \\\ 0 & 0 & 1 \\\ \end{matrix} \right| \\\ \end{aligned}$$ Now opening the determinant, we can write further $\begin{aligned} & \left( {{t}_{5}}-{{t}_{10}} \right)\left[-15(1)-0(25) \right]-({{t}_{10}}-{{t}_{25}})[-5(1)-0(25)]+{{t}_{25}}[-5(0)-0(-15)] \\\ & \Rightarrow -15({{t}_{5}}-{{t}_{10}})+5({{t}_{10}}-{{t}_{25}}) \\\ & \Rightarrow -15{{t}_{5}}+15{{t}_{10}}+5{{t}_{10}}-5{{t}_{25}} \\\ & \Rightarrow -15{{t}_{5}}+20{{t}_{10}}-5{{t}_{25}} \\\ \end{aligned}$ Now we have to put the values of ${{t}_{5}},{{t}_{10}}$ and ${{t}_{25}}$ from (1),(2) and (3) So, we can write $$\begin{aligned} & =-15(a+4d)+20(a+9d)-5(a+24d) \\\ & =-15a-60d+20a+180d-5a-120d \\\ & =-15a+15a-180d+180d \\\ & =0+0 \\\ & =0 \\\ \end{aligned}$$ **Hence the value of the determinant is zero. So, option D is correct.** Note: It should be important to note that whatever we assume in question in order to solve the question, the assumed term never comes in the final answer. All are eliminated during calculation, if they occur it means we are mistaken. In our answer the assumed term $a,d$are not in the final answer. Also, if in a given sequence ${{t}_{1}},{{t}_{2}},{{t}_{3}},....$ ${{t}_{n}}-{{t}_{n-1}}=d$(constant) then the given sequence is in AP. Whenever we do the arithmetic operation for any column or row of a determinant with the combination of columns and rows respectively, the value of the determinant is not changed. So, we can do $\begin{aligned} & {{C}_{1}}\to a{{C}_{1}}\pm b{{C}_{2}}\pm c{{C}_{3}} \\\ & {{R}_{1}}\to \alpha {{R}_{1}}\pm \beta {{R}_{2}}\pm \gamma {{R}_{3}} \\\ \end{aligned}$