Solveeit Logo

Question

Question: If we have given \[ x=\tan t\text{ and }y=3\sec t\text{, then the value of }\dfrac{{{d}^{2}}y}{d{{x}...

If we have given x=tant and y=3sect, then the value of d2ydx2 at t=π4 is x=\tan t\text{ and }y=3\sec t\text{, then the value of }\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\text{ at }t=\dfrac{\pi }{4}\text{ is}

\text{A) }\dfrac{3}{2\sqrt{2}} \\\ \text{B) }\dfrac{1}{3\sqrt{2}} \\\ \text{C) }\dfrac{1}{6} \\\ \text{D) }\dfrac{1}{6\sqrt{2}} \\\ \end{array}$$
Explanation

Solution

In this, we will find the value of d2ydx2 at t=π4\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\text{ at }t=\dfrac{\pi }{4} whenx=tant and y=3sectx=\tan t\text{ and }y=3\sec t. At first we will derivatives of x and y with respect to t and then find d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} by using chain rule. Then compute the value at t=π4t=\dfrac{\pi }{4}.

Complete step by step answer:
Given thatx=tant and y=3sectx=\tan t\text{ and }y=3\sec t.
Differentiating x with respect to t, we get
dxdt=d(tant)dt\dfrac{dx}{dt}=\dfrac{d\left( \tan t \right)}{dt}
Since, d(tanx)dx=sec2x\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x
dxdt=sec2t.....(1)\Rightarrow \dfrac{dx}{dt}={{\sec }^{2}}t.....(1)
Differentiating y with respect to t, we get
dydt=d(3sect)dt=3d(sect)dt\dfrac{dy}{dt}=\dfrac{d\left( 3\sec t \right)}{dt}=\dfrac{3d\left( \sec t \right)}{dt}
Since, d(secx)dx=secxtanx\dfrac{d\left( \sec x \right)}{dx}=\sec x\cdot \tan x
dydt=3secttant.....(2)\Rightarrow \dfrac{dy}{dt}=3\sec t\cdot \tan t.....(2)
Now,dydx=dydtdxdt, dxdt0.....(3)\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}},\text{ }\dfrac{dx}{dt}\ne 0.....(3)
Since, t=π4dxdt=sec2(π4)=(2)2=2t=\dfrac{\pi }{4}\text{, }\dfrac{dx}{dt}={{\sec }^{2}}\left( \dfrac{\pi }{4} \right)={{\left( \sqrt{2} \right)}^{2}}=2
Hence, equation (3) holds as dxdt0 at t=π4.\dfrac{dx}{dt}\ne 0\text{ at }t=\dfrac{\pi }{4}.
Using equation (1) and equation (2) in equation (3), we get
dydx=dydtdxdt=3secttantsec2t\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{3\sec t\cdot \tan t}{{{\sec }^{2}}t}
By cancelling sect from numerator and denominator, we get
dydx=3tantsect\dfrac{dy}{dx}=\dfrac{3\tan t}{\sec t}
Since,tant=sintcost and sect=1cost.\tan t=\dfrac{\sin t}{\cos t}\text{ and }\sec t=\dfrac{1}{\cos t}.
dydx=3tantsect=3(sintcost)1cost.\dfrac{dy}{dx}=\dfrac{3\tan t}{\sec t}=\dfrac{3\left( \dfrac{\sin t}{\cos t} \right)}{\dfrac{1}{\cos t}}.
By cancelling 1cost\dfrac{1}{\cos t} from numerator and denominator, we get
dydx=3sint.....(4)\dfrac{dy}{dx}=3\sin t.....(4)
By chain rule and using equation (4),
dy2d2x=ddt(dydx)dtdx=d(3sint)dt1dxdt\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)\cdot \dfrac{dt}{dx}=\dfrac{d\left( 3\sin t \right)}{dt}\cdot \dfrac{1}{\dfrac{dx}{dt}}
By equation (1), we get
dy2d2x=3d(sint)dt(1sec2t)\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{3d\left( \sin t \right)}{dt}\cdot \left( \dfrac{1}{{{\sec }^{2}}t} \right)
Since, d(sinx)dx=cosx\dfrac{d\left( \sin x \right)}{dx}=\cos x
dy2d2x=3cost(1sec2t)\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3\cos t\cdot \left( \dfrac{1}{{{\sec }^{2}}t} \right)
1sect=cost1sec2t=cos2t\dfrac{1}{\sec t}=\cos t\Rightarrow \dfrac{1}{{{\sec }^{2}}t}={{\cos }^{2}}t
dy2d2x=3cost(cos2t)=3cos3t\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3\cos t\cdot \left( {{\cos }^{2}}t \right)=3{{\cos }^{3}}t
At t=π4dy2d2x=3(cos(π4))3=3(12)3=322t=\dfrac{\pi }{4}\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3{{\left( \cos \left( \dfrac{\pi }{4} \right) \right)}^{3}}=3{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=\dfrac{3}{2\sqrt{2}}
dy2d2x=322\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{3}{2\sqrt{2}}.

So, the correct answer is “Option A”.

Note: In this problem one should know all formulas of derivative and what is chain rule?. Keep in mind that we did not calculate the double derivative of x and y with respect to t and then find the double derivative of y with respect to x using double derivatives of x and y.