Solveeit Logo

Question

Question: If we have given \(\sin \theta = \sin \alpha \) Then find which option satisfies the given identit...

If we have given sinθ=sinα\sin \theta = \sin \alpha
Then find which option satisfies the given identity.
A. θ+α2 is any odd multiple of π2 and θα2 is any multiple of π B. θ+α2 is any even multiple of π2 and θα2 is any multiple of π C. θ+α2 is any multiple of π2 and θα2 is any odd multiple of π D. θ+α2 is any multiple of π2 and θα2 is any even multiple of π  {\text{A}}{\text{. }}\dfrac{{\theta + \alpha }}{2}{\text{ is any odd multiple of }}\dfrac{\pi }{2}{\text{ and }}\dfrac{{\theta - \alpha }}{2}{\text{ is any multiple of }}\pi \\\ {\text{B}}{\text{. }}\dfrac{{\theta + \alpha }}{2}{\text{ is any even multiple of }}\dfrac{\pi }{2}{\text{ and }}\dfrac{{\theta - \alpha }}{2}{\text{ is any multiple of }}\pi \\\ {\text{C}}{\text{. }}\dfrac{{\theta + \alpha }}{2}{\text{ is any multiple of }}\dfrac{\pi }{2}{\text{ and }}\dfrac{{\theta - \alpha }}{2}{\text{ is any odd multiple of }}\pi \\\ {\text{D}}{\text{. }}\dfrac{{\theta + \alpha }}{2}{\text{ is any multiple of }}\dfrac{\pi }{2}{\text{ and }}\dfrac{{\theta - \alpha }}{2}{\text{ is any even multiple of }}\pi \\\

Explanation

Solution

- Hint:- In this question first we have to convert the given question (sinθ=sinα\sin \theta = \sin \alpha ) into a form in which we can equate terms involved in it to zero, using trigonometric identities. Then, use the condition sin(a)\sin (a) and cos(b)\cos (b) are zero to get the result in required form.

Complete step-by-step solution -

Given: sinθ=sinα\sin \theta = \sin \alpha eq.1
sinθsinα = 0\Rightarrow \sin \theta - \sin \alpha {\text{ = 0}}

We know, from trigonometric identities
sin(a)sin(b)=2cos(a+b2).sin(ab2)\sin (a) - \sin (b) = 2\cos \left( {\dfrac{{a + b}}{2}} \right).\sin \left( {\dfrac{{a - b}}{2}} \right)
On applying above formula on eq.1 we get
sinθsinα = 0 2cos(θ+α2).sin(θα2)=0 eq.2  \Rightarrow \sin \theta - \sin \alpha {\text{ = 0}} \\\ \Rightarrow 2\cos \left( {\dfrac{{\theta + \alpha }}{2}} \right).\sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0{\text{ eq}}{\text{.2}} \\\
We know,
If sinθ=0\sin \theta = 0
Then, θ=nπ\theta = n\pi eq.3
where n=integer{\text{where }}n = {\text{integer}}
And if cosθ=0\cos \theta = 0
Then, θ=(2n+1)π2\theta = \dfrac{{(2n + 1)\pi }}{2} eq.4
where n=integer{\text{where }}n = {\text{integer}}
Now, using eq.3 and eq.4 we can write eq.2 as
2cos(θ+α2).sin(θα2)=0 cos(θ+α2)=0 or sin(θα2)=0  \Rightarrow 2\cos \left( {\dfrac{{\theta + \alpha }}{2}} \right).\sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0 \\\ \Rightarrow \cos \left( {\dfrac{{\theta + \alpha }}{2}} \right) = 0{\text{ or }}\sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0 \\\
On solving these two conditions separately we get
cos(θ+α2)=0  (θ+α2)=(2n+1)π2  from eq.4 where n=integer  \Rightarrow \cos \left( {\dfrac{{\theta + \alpha }}{2}} \right) = 0{\text{ }} \\\ \Rightarrow \left( {\dfrac{{\theta + \alpha }}{2}} \right) = \dfrac{{(2n + 1)\pi }}{2}{\text{ \\{ from eq}}{\text{.4\\} }} \\\ {\text{where }}n = {\text{integer}} \\\
Therefore, (θ+α2)\left( {\dfrac{{\theta + \alpha }}{2}} \right) is the odd multiple of π2\dfrac{\pi }{2}. Statement 1
Now, consider sin(θα2)=0\sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0
sin(θα2)=0 (θα2)=nπ  from eq.3 where n=integer  \Rightarrow \sin \left( {\dfrac{{\theta - \alpha }}{2}} \right) = 0 \\\ \Rightarrow \left( {\dfrac{{\theta - \alpha }}{2}} \right) = n\pi {\text{ \\{ from eq}}{\text{.3\\} }} \\\ {\text{where }}n = {\text{integer}} \\\
Therefore, (θα2)\left( {\dfrac{{\theta - \alpha }}{2}} \right) is any multiple of π\pi . Statement 2
Hence, from Statement 1 and Statement 2, option 1 is correct.

Note: - Whenever you get this type of question the key concept to solve this is to learn all the trigonometric identities. And also you must have to learn the various conditions of trigonometric angles like sinθ,cosθ\sin \theta ,\cos \theta etc. when equating them to zero. Remember sin(a)sin(b)=2cos(a+b2).sin(ab2)\sin (a) - \sin (b) = 2\cos \left( {\dfrac{{a + b}}{2}} \right).\sin \left( {\dfrac{{a - b}}{2}} \right) these formulas for easy solving.