Solveeit Logo

Question

Question: If we have an inverse trigonometric expression as \[{{\sin }^{-1}}a+{{\sin }^{-1}}b+{{\sin }^{-1}}c=...

If we have an inverse trigonometric expression as sin1a+sin1b+sin1c=3π2{{\sin }^{-1}}a+{{\sin }^{-1}}b+{{\sin }^{-1}}c=\dfrac{3\pi }{2} and f(2)=2,f(x+y)=f(x)f(y)x,yRf\left( 2 \right)=2,f\left( x+y \right)=f\left( x \right)f\left( y \right)\forall x,y\in R then af(2)+bf(4)+cf(6)3af(2)bf(4)cf(6)af(2)+bf(4)+cf(6){{a}^{f\left( 2 \right)}}+{{b}^{f\left( 4 \right)}}+{{c}^{f\left( 6 \right)}}-\dfrac{3{{a}^{f\left( 2 \right)}}{{b}^{f\left( 4 \right)}}{{c}^{f\left( 6 \right)}}}{{{a}^{f\left( 2 \right)}}+{{b}^{f\left( 4 \right)}}+{{c}^{f\left( 6 \right)}}} equals to
(A) 2
(B) 4
(C) 6
(D) 8

Explanation

Solution

So here in the question we have to find the values of af(2)+bf(4)+cf(6)3af(2)bf(4)cf(6)af(2)+bf(4)+cf(6){{a}^{f\left( 2 \right)}}+{{b}^{f\left( 4 \right)}}+{{c}^{f\left( 6 \right)}}-\dfrac{3{{a}^{f\left( 2 \right)}}{{b}^{f\left( 4 \right)}}{{c}^{f\left( 6 \right)}}}{{{a}^{f\left( 2 \right)}}+{{b}^{f\left( 4 \right)}}+{{c}^{f\left( 6 \right)}}} from given equation. Find the function and then use that function in the given expression. Then solve this in this question we have to find the value of a, b, c and then with the help of this formula f(x)=akxf\left( x \right)={{a}^{kx}} we will find the values of f(2),f(4),f(6)f\left( 2 \right),f\left( 4 \right),f\left( 6 \right) we will put these in this af(2)+bf(4)+cf(6)3af(2)bf(4)cf(6)af(2)+bf(4)+cf(6){{a}^{f\left( 2 \right)}}+{{b}^{f\left( 4 \right)}}+{{c}^{f\left( 6 \right)}}-\dfrac{3{{a}^{f\left( 2 \right)}}{{b}^{f\left( 4 \right)}}{{c}^{f\left( 6 \right)}}}{{{a}^{f\left( 2 \right)}}+{{b}^{f\left( 4 \right)}}+{{c}^{f\left( 6 \right)}}} and then we will get the final answer.

Complete step-by-step solution:
So here we will start the solution by taking the given equation,
sin1a+sin1b+sin1c=3π2{{\sin }^{-1}}a+{{\sin }^{-1}}b+{{\sin }^{-1}}c=\dfrac{3\pi }{2}
As we know the range of xsin1θ{{\sin }^{-1}}\theta is [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]. Maximum value of sin1θ{{\sin }^{-1}}\theta will be π2\dfrac{\pi }{2}. And the minimum value of the sin1θ{{\sin }^{-1}}\theta will be π2-\dfrac{\pi }{2} Then only the above equation can reach 3π2\dfrac{3\pi }{2}.
So, sin1a=sin1b=sin1c=π2{{\sin }^{-1}}a={{\sin }^{-1}}b={{\sin }^{-1}}c=\dfrac{\pi }{2}
Then only we will reach the value of 3π2\dfrac{3\pi }{2}.

& {{\sin }^{-1}}a=\dfrac{\pi }{2} \\\ &\Rightarrow \sin \left( {{\sin }^{-1}}a \right)=\sin \left( \dfrac{\pi }{2} \right) \\\ &\Rightarrow a=1 \\\ \end{aligned}$$ So here the value of a, b, c will be as we have given $${{\sin }^{-1}}a+{{\sin }^{-1}}b+{{\sin }^{-1}}c=\dfrac{3\pi }{2}$$’ $$a=b=c=1$$ Also, we have Given that $$f\left( 2 \right)=2,f\left( x+y \right)=f\left( x \right)f\left( y \right)\forall x,y\in R$$ $$\Rightarrow f\left( x+y \right)=f\left( x \right)f\left( y \right)$$ This type of operation only happens in exponential functions. So, put $$f\left( x \right)={{a}^{kx}}$$ $$\begin{aligned} & \Rightarrow f\left( x \right)={{a}^{kx}} \\\ & \Rightarrow f\left( y \right)={{a}^{ky}} \\\ & \Rightarrow f\left( x \right)f\left( y \right)={{a}^{k\left( x+y \right)}} \\\ & \Rightarrow f\left( x+y \right)={{a}^{k\left( x+y \right)}} \\\ & \Rightarrow f\left( x+y \right)=f\left( x \right)f\left( y \right)={{a}^{k\left( x+y \right)}} \\\ \end{aligned}$$ And we have Given that $$f\left( 2 \right)=2$$,so put this in function $$f\left( x \right)={{a}^{kx}}$$ then we will get. $$\begin{aligned} & \Rightarrow f\left( 2 \right)={{a}^{2k}} \\\ & \Rightarrow {{a}^{2k}}={{2}^{1}} \\\ \end{aligned}$$ Base and powers should be equal. $$\begin{aligned} &\Rightarrow a=2 \\\ &\Rightarrow 2k=1 \\\ &\Rightarrow k=\dfrac{1}{2} \\\ \end{aligned}$$ So, the function is $$f\left( x \right)={{2}^{\dfrac{x}{2}}}$$ We have the Give expression is $$\begin{aligned} & \Rightarrow {{a}^{f\left( 2 \right)}}+{{b}^{f\left( 4 \right)}}+{{c}^{f\left( 6 \right)}}-\dfrac{3{{a}^{f\left( 2 \right)}}{{b}^{f\left( 4 \right)}}{{c}^{f\left( 6 \right)}}}{{{a}^{f\left( 2 \right)}}+{{b}^{f\left( 4 \right)}}+{{c}^{f\left( 6 \right)}}} \\\ & a=b=c=1 \\\ &\Rightarrow f\left( x \right)={{2}^{\dfrac{x}{2}}} \\\ &\Rightarrow f\left( 2 \right)={{2}^{\dfrac{2}{2}}}=2 \\\ &\Rightarrow f\left( 4 \right)={{2}^{\dfrac{4}{2}}}=4 \\\ &\Rightarrow f\left( 6 \right)={{2}^{\dfrac{6}{2}}}=8 \\\ \end{aligned}$$ Put these values in the given expression $$\begin{aligned} & \Rightarrow {{a}^{f\left( 2 \right)}}+{{b}^{f\left( 4 \right)}}+{{c}^{f\left( 6 \right)}}-\dfrac{3{{a}^{f\left( 2 \right)}}{{b}^{f\left( 4 \right)}}{{c}^{f\left( 6 \right)}}}{{{a}^{f\left( 2 \right)}}+{{b}^{f\left( 4 \right)}}+{{c}^{f\left( 6 \right)}}} \\\ & \Rightarrow {{1}^{2}}+{{1}^{4}}+{{1}^{8}}-\dfrac{{{3.1}^{2}}{{.1}^{2}}{{.1}^{8}}}{{{1}^{2}}+{{1}^{2}}+{{1}^{8}}} \\\ & \Rightarrow 3-\dfrac{3}{3} \\\ & \Rightarrow 3-1 \\\ & \Rightarrow 2 \\\ \end{aligned}$$ **Hence the correct option is option A).** **Note:** We should remember range and domain for trigonometric and inverse trigonometric functions. If you don’t remember then you won’t be able to solve this type of question. Students make sure when you have given the equations like $${{\sin }^{-1}}a=\dfrac{\pi }{2}$$ here they are asking for the value of a then we need to multiply it by the $$\sin \left( {{\sin }^{-1}}a \right)=\sin \left( \dfrac{\pi }{2} \right)$$ then we will get the value of $$a=1$$.