Solveeit Logo

Question

Question: If we have an integration as \(\int {\dfrac{{\sec x - \tan x}}{{\sqrt {{{\sin }^2}x - \sin x} }}} dx...

If we have an integration as secxtanxsin2xsinxdx=klnf(x)+2tanx(tanxsecx)+c\int {\dfrac{{\sec x - \tan x}}{{\sqrt {{{\sin }^2}x - \sin x} }}} dx = k\ln |f(x) + \sqrt 2 \sqrt {\tan x(\tan x - \sec x)} | + c, where cc is arbitrary constant and kk is a fixed constant, then
(This question has multiple correct options)
A) k=2k = \sqrt 2
B) k=12k = \dfrac{1}{{\sqrt 2 }}
C) f(x)=tanxsecxf(x) = \tan x - \sec x
D) f(x)=tanx+secxf(x) = \sqrt {\tan x + \sec x}

Explanation

Solution

In the given question, we are supposed to find the value of the fixed constant kk and the function f(x)f(x) as we can assume this by looking at the given options.
We are given the following equation:
secxtanxsin2xsinxdx=klnf(x)+2tanx(tanxsecx)+c\int {\dfrac{{\sec x - \tan x}}{{\sqrt {{{\sin }^2}x - \sin x} }}} dx = k\ln |f(x) + \sqrt 2 \sqrt {\tan x(\tan x - \sec x)} | + c
We will firstly try to change the left side of the equation so that the integrand present on the left-side only contains the trigonometric functions sec\sec and tan\tan only.
Then, we will solve the integral using a substitution method to obtain an expression that looks similar to the right-hand side of the equation, so that we can compare both expressions to get the value of kk and f(x)f(x).

Complete step-by-step solution:
Let us take I=secxtanx(sin2xsinx)dxI = \int {\dfrac{{\sec x - \tan x}}{{\sqrt {({{\sin }^2}x - \sin x} )}}} dx.
In order to change the left side of the equation in the terms of the trigonometric functions sec\sec and tan\tan only, we are firstly multiplying and dividing the radicand in II in the denominator by cos2x{\cos ^2}x, as follows:
I=secxtanx(sin2xsinx)×cos2xcos2xdxI = \int {\dfrac{{\sec x - \tan x}}{{\sqrt {({{\sin }^2}x - \sin x) \times \dfrac{{{{\cos }^2}x}}{{{{\cos }^2}x}}} }}} dx
The above integral can be written as follows by taking cos2x{\cos ^2}x inside the bracket:
I=secxtanx(sin2xsinxcos2x)×cos2xdxI = \int {\dfrac{{\sec x - \tan x}}{{\sqrt {(\dfrac{{{{\sin }^2}x - \sin x}}{{{{\cos }^2}x}}) \times {{\cos }^2}} x}}} dx
Taking cos2x{\cos ^2}x, which is present in the numerator of the radicand, outside the radical, we get
I=secxtanxcosx(sin2xsinxcos2x)dxI = \int {\dfrac{{\sec x - \tan x}}{{\cos x\sqrt {(\dfrac{{{{\sin }^2}x - \sin x}}{{{{\cos }^2}x}})} }}} dx
Since, 1cosx=secx\dfrac{1}{{\cos x}} = \sec x, so we can write the above integral as:
I=(secxtanx)secxsin2xcos2xsinxcos2xdxI = \int {\dfrac{{(\sec x - \tan x)\sec x}}{{\sqrt {\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - \dfrac{{\sin x}}{{{{\cos }^2}x}}} }}} dx
Now, we can write cos2x=cosx×cosx{\cos ^2}x = \cos x \times \cos x, thus the above integral becomes:
I=(secxtanx)secxsin2xcos2xsinxcosx×1cosxdxI = \int {\dfrac{{(\sec x - \tan x)\sec x}}{{\sqrt {\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - \dfrac{{\sin x}}{{\cos x}} \times \dfrac{1}{{\cos x}}} }}dx}
We know that sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x.
So, sin2xcos2x=tan2x\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = {\tan ^2}x
So, the above integral can be further written as:-
I=(secxtanx)secx(tan2xtanxsecxdxI = \int {\dfrac{{(\sec x - \tan x)\sec x}}{{\sqrt {({{\tan }^2}x - \tan x\sec x} }}} dx
Now, let tanxsecx=t\tan x - \sec x = t.
Then, on differentiating both sides, we get
sec2xdxsecx.tanxdx=dt{\sec ^2}xdx - \sec x.\tan xdx = dt
(because the differentiation of tanx\tan x is sec2xdx{\sec ^2}xdx and the differentiation of secx\sec x is secxtanxdx\sec x\tan xdx.)
Take secxdx\sec xdx common from the LHS, we get:
(secxtanx)secxdx=dt(\sec x - \tan x)\sec xdx = dt
Also, we have that:
tanxsecx=t\tan x - \sec x = t
On squaring both sides, we get:
(tanxsecx)2=t2{(\tan x - \sec x)^2} = {t^2}
Since, (ab)2=a22ab+b2{(a - b)^2} = {a^2} - 2ab + {b^2}
therefore, we must have that:
tan2x2tanxsecx+sec2x=t2{\tan ^2}x - 2\tan x\sec x + {\sec ^2}x = {\operatorname{t} ^2}
Now, we know that:
sec2x=1+tan2x{\sec ^2}x = 1 + {\tan ^2}x
Therefore, we have that:
tan2x2tanxsecx+1+tan2x=t2{\tan ^2}x - 2\tan x\sec x + 1 + {\tan ^2}x = {\operatorname{t} ^2}
Now, combining the like terms, that is, combining both tan2x{\tan ^2}x present on the LHS of the above equation, we get:
2tan2x2tanxsecx+1=t22{\tan ^2}x - 2\tan x\sec x + 1 = {\operatorname{t} ^2}
Taking 11 from LHS to RHS and then, taking out 22 common from the LHS, we get:
2(tan2xtanxsecx)=t212({\tan ^2}x - \tan x\sec x) = {\operatorname{t} ^2} - 1
Taking 22 from LHS to RHS, we get the above equation as:
(tan2tanxsecx)=t212({\tan ^2} - \tan x\sec x) = \dfrac{{{\operatorname{t} ^2} - 1}}{2}
Thus, the integral II can finally be written as:-
I=dtt212I = \int {\dfrac{{dt}}{{\sqrt {\dfrac{{{\operatorname{t} ^2} - 1}}{2}} }}}
Taking 22 out of the integral, we get:
I=2dtt21I = \sqrt 2 \int {\dfrac{{dt}}{{\sqrt {{\operatorname{t} ^2} - 1} }}}
Now, we know the following integration formula:
dxx21=lnx+x21+c\int {\dfrac{{dx}}{{\sqrt {{x^2} - 1} }} = \ln |x + } \sqrt {{x^2} - 1} | + c, where cc is the constant of integration.
Therefore, by applying this formula on the integral II, we get:
I=2lnt+t21+cI = \sqrt 2 \ln |t + \sqrt {{t^2} - 1} | + c
Substituting the value of tt, which is tanxsecx\tan x - \sec x and the value of t21{t^2} - 1, which is 2(tan2xtanxsecx)2({\tan ^2}x - \tan x\sec x), we get the integral value II as:
I=2lntanxsecx+2(tan2xtanxsecx)+cI = \sqrt 2 \ln |\tan x - \sec x + \sqrt {2({{\tan }^2}x - \tan x\sec x)} | + c
The above integral can also be written as:
I=2lntanxsecx+2tanx(tanxsecx)+cI = \sqrt 2 \ln |\tan x - \sec x + \sqrt 2 \sqrt {\tan x(\tan x - \sec x)} | + c
Now, comparing the above value of II with the given value of II, that is, with klnf(x)+2tanx(tanxsecx)+ck\ln |f(x) + \sqrt 2 \sqrt {\tan x(\tan x - \sec x)} | + c, we get that:
k=2k = \sqrt 2 and
f(x)=tanxsecxf(x) = \tan x - \sec x.
Hence, option A) k=2k = \sqrt 2 and option C) f(x)=tanxsecxf(x) = \tan x - \sec x are the correct options.

Note: We have used the substitution method to find the value of the integral. Also, to solve such types of questions, we need to remember all the trigonometric identities and integration formulae.
Here, we have changed the integrand so that it only contains the trigonometric functions tan\tan and sec\sec only because, on the RHS, we are given the expression that contains the trigonometric functions tan\tan and sec\sec only.