Solveeit Logo

Question

Question: If we have an integral function as \[f(x) = \int {\dfrac{{dx}}{{\left[ {{{\left( {1 + {x^2}} \right)...

If we have an integral function as f(x)=dx[(1+x2)32]f(x) = \int {\dfrac{{dx}}{{\left[ {{{\left( {1 + {x^2}} \right)}^{\dfrac{3}{2}}}} \right]}}} .and f(0)=0f\left( 0 \right) = 0, then the value of f(1)f\left( 1 \right)is

Explanation

Solution

To solve this problem you should know basic trigonometrical and integral formulae. In this problem we are going to use a substitution method to solve it. In the substitution method we substitute the given variable by any other variable to make it simple.
Trigonometric Identities:
1. 1secθ=cosθ\dfrac{1}{{\sec \theta }} = \cos \theta
2. 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta

Complete step-by-step solution:
Given function: f(x)=dx[(1+x2)32]f(x) = \int {\dfrac{{dx}}{{\left[ {{{\left( {1 + {x^2}} \right)}^{\dfrac{3}{2}}}} \right]}}} ……………………. (1)
To solve this problem:
As in the given question, the denominator is (1+x2)32{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} .So in order to simplify the given function,
Let, x=tanyx = \tan y
Differentiating both sides, we get
dx=sec2ydydx = {\sec ^2}ydy
Putting x=tanyx = \tan y and dx=sec2ydydx = {\sec ^2}ydy in equation (1),
f(tany)=sec2ydy(1+tan2y)32f(\tan y) = \int {\dfrac{{{{\sec }^2}ydy}}{{{{\left( {1 + {{\tan }^2}y} \right)}^{\dfrac{3}{2}}}}}}
Using the trigonometric identity 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta ,we get
f(tany)=sec2ydy(sec2y)32f(\tan y) = \int {\dfrac{{{{\sec }^2}ydy}}{{{{\left( {{{\sec }^2}y} \right)}^{\dfrac{3}{2}}}}}}
Solving powers in the denominator, we get
f(tany)=sec2ydysec3yf(\tan y) = \int {\dfrac{{{{\sec }^2}ydy}}{{{{\sec }^3}y}}}
Dividing numerator and denominator by sec2y{\sec ^2}y ,we get
f(tany)=dysecyf(\tan y) = \int {\dfrac{{dy}}{{\sec y}}}
Using another trigonometric identity 1secθ=cosθ\dfrac{1}{{\sec \theta }} = \cos \theta ,we get
f(tany)=cosydyf(\tan y) = \int {\cos ydy}
Integrating cosy\cos y
f(tany)=siny+cf(\tan y) = \sin y + c
Now, putting the value of y in above function, we get
f(x)=sin(tan1x)+cf(x) = \sin \left( {{{\tan }^{ - 1}}x} \right) + c …………………… (2)
But it is given in the question that f(0)=0f\left( 0 \right) = 0. So
f(0)=sin(tan10)+cf(0) = \sin \left( {{{\tan }^{ - 1}}0} \right) + c
0=sin0+c0 = \sin 0 + c
c=0
Putting c=0 in equation (2), we get
f(x)=sin(tan1x)f(x) = \sin \left( {{{\tan }^{ - 1}}x} \right)
Now, according to the given question we need to find f(1)f\left( 1 \right).So putting f=1f = 1 in above equation, we get
f(1)=sin(tan11)f(1) = \sin \left( {{{\tan }^{ - 1}}1} \right)
Putting value of tan11{\tan ^{ - 1}}1, we get
f(1)=sin45f(1)=\sin {45}^{\circ}
Putting the value of sin45\sin {45^ \circ } ,we get
f(1)=12f\left( 1 \right) = \dfrac{1}{{\sqrt 2 }}
Hence from the above calculation, we get
f(1)=12f\left( 1 \right) = \dfrac{1}{{\sqrt 2 }}

Note: As we can see from the above solution, we had put x=tanyx = \tan y in the given integral equation in order to simplify it before integrating.
Alternatively, we can also put x=cotyx = \cot y in order to simplify it. When we shall put x=cotyx = \cot y in the given integral equation we will get our integrand in the form of cosecx\cos ecx.