Solveeit Logo

Question

Question: If we have an integral as \(I\left( m,n \right)=\int\limits_{0}^{1}{{{t}^{m}}{{\left( 1+t \right)}^{...

If we have an integral as I(m,n)=01tm(1+t)ndtI\left( m,n \right)=\int\limits_{0}^{1}{{{t}^{m}}{{\left( 1+t \right)}^{n}}dt}, then expression for I(m,n)I\left( m,n \right) in terms of I(m+1,n1)I\left( m+1,n-1 \right) is:
A). 2nm+1nm+1I(m+1,n1)\dfrac{{{2}^{n}}}{m+1}-\dfrac{n}{m+1}I\left( m+1,n-1 \right)
B). nm+1I(m+1,n1)\dfrac{n}{m+1}I\left( m+1,n-1 \right)
C). 2nm+1+nm+1I(m+1,n1)\dfrac{{{2}^{n}}}{m+1}+\dfrac{n}{m+1}I\left( m+1,n-1 \right)
D). mm+1I(m+1,n1)\dfrac{m}{m+1}I\left( m+1,n-1 \right)

Explanation

Solution

At first find out the value of I(m+1,n1)I\left( m+1,n-1 \right) from the given expression. Then try to apply integration by parts in such a way so that we can get back I(m,n)I\left( m,n \right). After this keep I(m+1,n1)I\left( m+1,n-1 \right) on one side and take the rest of the terms on the other side.

Complete step-by-step solution
The given expression is,
I(m,n)=01tm(1+t)ndt............(1)I\left( m,n \right)=\int\limits_{0}^{1}{{{t}^{m}}{{\left( 1+t \right)}^{n}}dt}............(1)
We have to express I(m,n)I\left( m,n \right) in terms of I(m+1,n1)I\left( m+1,n-1 \right).
If we replace m by m+1 and n by n+1 in equation (1) then we will get,
I(m+1,n1)=01tm+1(1+t)n1dtI\left( m+1,n-1 \right)=\int\limits_{0}^{1}{{{t}^{m+1}}{{\left( 1+t \right)}^{n-1}}dt}
Let us take u(t)=tm+1,v(t)=(1+t)nnu\left( t \right)={{t}^{m+1}},v\left( t \right)=\dfrac{{{\left( 1+t \right)}^{n}}}{n}.
If we differentiate v(t) with respect to t, we will get,
dvdt=n(1+t)n1n=(1+t)n1\dfrac{dv}{dt}=\dfrac{n{{\left( 1+t \right)}^{n-1}}}{n}={{\left( 1+t \right)}^{n-1}}
Therefore,
I(m+1,n1)=01u(t)dvdtdtI\left( m+1,n-1 \right)=\int\limits_{0}^{1}{u\left( t \right)\dfrac{dv}{dt}dt}
Now we can apply integration by parts.
I(m+1,n1)=[u(t)v(t)]t=0t=101(dudt)v(t)dt..........(2)I\left( m+1,n-1 \right)=\left[ u\left( t \right)v\left( t \right) \right]_{t=0}^{t=1}-\int\limits_{0}^{1}{\left( \dfrac{du}{dt} \right)v\left( t \right)dt..........(2)}
Now substitute the values of u(t) and v(t) in (2)
I(m+1,n1)=[tm+1(1+t)nn]t=0t=101ddt(tm+1)(1+t)nndt\Rightarrow I\left( m+1,n-1 \right)=\left[ {{t}^{m+1}}\dfrac{{{\left( 1+t \right)}^{n}}}{n} \right]_{t=0}^{t=1}-\int\limits_{0}^{1}{\dfrac{d}{dt}\left( {{t}^{m+1}} \right)\dfrac{{{\left( 1+t \right)}^{n}}}{n}}dt
Differentiate tm+1{{t}^{m+1}} with respect to t,
I(m+1,n1)=[tm+1(1+t)nn]t=0t=101(m+1)tm+11(1+t)nndt\Rightarrow I\left( m+1,n-1 \right)=\left[ {{t}^{m+1}}\dfrac{{{\left( 1+t \right)}^{n}}}{n} \right]_{t=0}^{t=1}-\int\limits_{0}^{1}{\left( m+1 \right){{t}^{m+1-1}}\dfrac{{{\left( 1+t \right)}^{n}}}{n}}dt
I(m+1,n1)=((1)m+1(1+1)nn(0)m+1(1+0)nn)m+1n01tm(1+t)ndt\Rightarrow I\left( m+1,n-1 \right)=\left( {{\left( 1 \right)}^{m+1}}\dfrac{{{\left( 1+1 \right)}^{n}}}{n}-{{\left( 0 \right)}^{m+1}}\dfrac{{{\left( 1+0 \right)}^{n}}}{n} \right)-\dfrac{m+1}{n}\int\limits_{0}^{1}{{{t}^{m}}{{\left( 1+t \right)}^{n}}}dt
Here we can substitute the value of equation (1),
I(m+1,n1)=(2nn0)m+1nI(m,n)\Rightarrow I\left( m+1,n-1 \right)=\left( \dfrac{{{2}^{n}}}{n}-0 \right)-\dfrac{m+1}{n}I\left( m,n \right)
Now we have to find out the value of I(m,n)I\left( m,n \right). Therefore we will take I(m,n)I\left( m,n \right) on the left-hand side and all the other terms on the right-hand side.
I(m+1,n1)=2nnm+1nI(m,n)\Rightarrow I\left( m+1,n-1 \right)=\dfrac{{{2}^{n}}}{n}-\dfrac{m+1}{n}I\left( m,n \right)
I(m+1,n1)2nn=m+1nI(m,n)\Rightarrow I\left( m+1,n-1 \right)-\dfrac{{{2}^{n}}}{n}=-\dfrac{m+1}{n}I\left( m,n \right) , taking 2nn\dfrac{{{2}^{n}}}{n} from right hand side to left hand side.
2nnI(m+1,n1)=m+1nI(m,n)\Rightarrow \dfrac{{{2}^{n}}}{n}-I\left( m+1,n-1 \right)=\dfrac{m+1}{n}I\left( m,n \right), multiplying both the sides of the equation by ‘-‘.
I(m,n)=2nn×nm+1nm+1I(m+1,n1)\Rightarrow I\left( m,n \right)=\dfrac{{{2}^{n}}}{n}\times \dfrac{n}{m+1}-\dfrac{n}{m+1}I\left( m+1,n-1 \right) , multiplying both the sides by nm+1\dfrac{n}{m+1}.
I(m,n)=2nm+1nm+1I(m+1,n1)\Rightarrow I\left( m,n \right)=\dfrac{{{2}^{n}}}{m+1}-\dfrac{n}{m+1}I\left( m+1,n-1 \right)
Therefore option (a) is correct.

Note: Alternatively we can find out the answer by cross checking the options. Like in option (a) if we put the value of I(m+1,n1)I\left( m+1,n-1 \right) we will get I(m,n)I\left( m,n \right) back. That means option (a) is correct. Be careful while you are applying integration by parts. You have to choose u(t) and v(t) in such a way so that you can get back I(m,n)I\left( m,n \right).