Solveeit Logo

Question

Question: If we have an inequality as \[\sin x+\sin y\ge \cos \alpha \cos x,\forall x\in R\], then \[\sin y+ \...

If we have an inequality as sinx+sinycosαcosx,xR\sin x+\sin y\ge \cos \alpha \cos x,\forall x\in R, then siny+cosα\sin y+ \cos \alpha is equal to,
A. -1
B. 1
C. 0
D. 2

Explanation

Solution

We will be using the concepts of trigonometric functions to solve the problem. We are going to rearrange the above inequality and then we will find the greatest value of the trigonometric expression. From this, we will get the value of siny&cosα\sin y\And \cos \alpha and after that we will put those values in that expression.

Complete step-by-step solution
Now, we have been given that sinx+sinycosαcosx,xR\sin x+\sin y\ge \cos \alpha \cos x,\forall x\in R. Since, it is true for all xRx\in R.
We are going to subtract sinx\sin x on both the sides of the above inequality and we get,
sinxsinx+sinycosαcosxsinx sinycosαcosxsinx \begin{aligned} & \Rightarrow \sin x-\sin x+\sin y\ge \cos \alpha \cos x-\sin x \\\ & \Rightarrow \sin y\ge \cos \alpha \cos x-\sin x \\\ \end{aligned}
If we find the value of siny\sin y in such a way so that its value is always greater than cosαcosxsinx\cos \alpha \cos x-\sin x then no matter what x can be the above inequality holds always true so we are going to find the maximum value of cosαcosxsinx\cos \alpha \cos x-\sin x. For that we are going to multiply and divide the R.H.S of the above inequality by 1+cos2α\sqrt{1+{{\cos }^{2}}\alpha } we get,
siny1+cos2α(cosαcosx1+cos2αsinx1+cos2α)\Rightarrow \sin y\ge \sqrt{1+{{\cos }^{2}}\alpha }\left( \dfrac{\cos \alpha \cos x}{\sqrt{1+{{\cos }^{2}}\alpha }}-\dfrac{\sin x}{\sqrt{1+{{\cos }^{2}}\alpha }} \right) ……………..(1)
Let us assume 11+cos2α=sinθ\dfrac{1}{\sqrt{1+{{\cos }^{2}}\alpha }}=\sin \theta then we are going to use the property of cosθ&sinθ\cos \theta \And \sin \theta to find the value of cosθ\cos \theta which is equal to:
cosθ=1sin2θ\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }
Substituting the value of sinθ\sin \theta in the above equation we get,
cosθ=111+cos2α cosθ=1+cos2α11+cos2α cosθ=cos2α1+cos2α \begin{aligned} & \Rightarrow \cos \theta =\sqrt{1-\dfrac{1}{1+{{\cos }^{2}}\alpha }} \\\ & \Rightarrow \cos \theta =\sqrt{\dfrac{1+{{\cos }^{2}}\alpha -1}{1+{{\cos }^{2}}\alpha }} \\\ & \Rightarrow \cos \theta =\sqrt{\dfrac{{{\cos }^{2}}\alpha }{1+{{\cos }^{2}}\alpha }} \\\ \end{aligned}
cosθ=cosα1+cos2α\Rightarrow \cos \theta =\dfrac{\cos \alpha }{\sqrt{1+{{\cos }^{2}}\alpha }}
So, substituting the above values of cosα1+cos2α&11+cos2α\dfrac{\cos \alpha }{\sqrt{1+{{\cos }^{2}}\alpha }}\And \dfrac{1}{\sqrt{1+{{\cos }^{2}}\alpha }} as cosθ&sinθ\cos \theta \And \sin \theta in (1) we get,
siny1+cos2α(cosθcosxsinθsinx)\Rightarrow \sin y\ge \sqrt{1+{{\cos }^{2}}\alpha }\left( \cos \theta \cos x-\sin \theta \sin x \right)
We know that cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B so using this trigonometric relation in the above problem we get,
siny1+cos2α(cos(θ+x))\Rightarrow \sin y\ge \sqrt{1+{{\cos }^{2}}\alpha }\left( \cos \left( \theta +x \right) \right)
The maximum value of the R.H.S is 1+cos2α\sqrt{1+{{\cos }^{2}}\alpha } then the above inequality will look like:
siny1+cos2α\Rightarrow \sin y\ge \sqrt{1+{{\cos }^{2}}\alpha }
Now, the maximum value which siny\sin y can take is 1 and we are taking the equality sign so 1+cos2α\sqrt{1+{{\cos }^{2}}\alpha } also equals 1.
And 1+cos2α=1\sqrt{1+{{\cos }^{2}}\alpha }=1 when cosα=0\cos \alpha =0. Hence, we got the value of siny=1&cosα=0\sin y=1\And \cos \alpha =0.
Now, in the above problem we are asked to find the value of the expression siny+cosα\sin y+\cos \alpha . Substituting the values of siny=1&cosα=0\sin y=1\And \cos \alpha =0 in this expression we get,
siny+cosα =1+0 =1 \begin{aligned} & \Rightarrow \sin y+\cos \alpha \\\ & =1+0 \\\ & =1 \\\ \end{aligned}
Hence, the correct option is (b).

Note: In the above solution, we have found the maximum value of cosαcosxsinx\cos \alpha \cos x-\sin x by using the formula for the greatest value of acosx±bsinxa\cos x\pm b\sin x which is equal to a2+b2\sqrt{{{a}^{2}}+{{b}^{2}}}. Now, on comparing “a” and “b” values with cosα&1\cos \alpha \And -1 respectively then the maximum value of cosαcosxsinx\cos \alpha \cos x-\sin x is equal to:
1+cos2α\sqrt{1+{{\cos }^{2}}\alpha }