Solveeit Logo

Question

Question: If we have an expression \[{x^m}{y^n} = {(x + y)^{m + n}}\], then \({(\dfrac{{dy}}{{dx}})_{x = 1,y =...

If we have an expression xmyn=(x+y)m+n{x^m}{y^n} = {(x + y)^{m + n}}, then (dydx)x=1,y=2{(\dfrac{{dy}}{{dx}})_{x = 1,y = 2}} is equal to
A)12A)\dfrac{1}{2}
B)2B)2
C)2mnC)\dfrac{{2m}}{n}
D)m2nD)\dfrac{m}{{2n}}

Explanation

Solution

First, we need to analyze the given information which is in algebraic form.
We can equate the given expression into some form and then we can differentiate using the derivatives of basic functions and applying the chain rule of differentiation.
differentiation, the derivative of xx raised to the power is denoted by ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} .
We know that the logarithm derivative function can be represented as ddxlogx=1x\dfrac{d}{{dx}}\log x = \dfrac{1}{x}
Formula used:
Chain rule of differentiation ddx(f(g(x))=f1(g(x))×g1(x)\dfrac{d}{{dx}}(f(g(x)) = {f^1}(g(x)) \times {g^1}(x)

Complete step-by-step solution:
Since from the given that we have, xmyn=(x+y)m+n{x^m}{y^n} = {(x + y)^{m + n}}
Now taking the logarithm function on both sides then we get xmyn=(x+y)m+nmlogx+nlogy=(m+n)log(x+y){x^m}{y^n} = {(x + y)^{m + n}} \Rightarrow m\log x + n\log y = (m + n)\log (x + y) where the general log can be expressed as logxm=mlogx\log {x^m} = m\log x (we applied this method in the above equation)
Now taking derivative with respect to x, on both sides we get mlogx+nlogy=(m+n)log(x+y)d(mlogx)dx+d(nlogy)dx=d((m+n)log(x+y))dxm\log x + n\log y = (m + n)\log (x + y) \Rightarrow \dfrac{{d(m\log x)}}{{dx}} + \dfrac{{d(n\log y)}}{{dx}} = \dfrac{{d((m + n)\log (x + y))}}{{dx}}
Since, d(mlogx)dx=mx\dfrac{{d(m\log x)}}{{dx}} = \dfrac{m}{x} where ddxlogx=1x\dfrac{d}{{dx}}\log x = \dfrac{1}{x}
Similarly, d(nlogy)dx=ny(dydx)\dfrac{{d(n\log y)}}{{dx}} = \dfrac{n}{y}(\dfrac{{dy}}{{dx}}) (because we are derivation with respect to x only, so theY-terms does not differ)
Also, d((m+n)log(x+y))dx=m+nx+y(1+dydx)\dfrac{{d((m + n)\log (x + y))}}{{dx}} = \dfrac{{m + n}}{{x + y}}(1 + \dfrac{{dy}}{{dx}}) with the help of chain rule, ddx(f(g(x))=f1(g(x))×g1(x)\dfrac{d}{{dx}}(f(g(x)) = {f^1}(g(x)) \times {g^1}(x)
Hence, we get d(mlogx)dx+d(nlogy)dx=d((m+n)log(x+y))dxmx+ny(dydx)=m+nx+y(1+dydx)\dfrac{{d(m\log x)}}{{dx}} + \dfrac{{d(n\log y)}}{{dx}} = \dfrac{{d((m + n)\log (x + y))}}{{dx}} \Rightarrow \dfrac{m}{x} + \dfrac{n}{y}(\dfrac{{dy}}{{dx}}) = \dfrac{{m + n}}{{x + y}}(1 + \dfrac{{dy}}{{dx}})
Now taking the derivative parts on the left side and remaining values on the right side we get mx+ny(dydx)=m+nx+y(1+dydx)ny(dydx)m+nx+ydydx=m+nx+ymx\dfrac{m}{x} + \dfrac{n}{y}(\dfrac{{dy}}{{dx}}) = \dfrac{{m + n}}{{x + y}}(1 + \dfrac{{dy}}{{dx}}) \Rightarrow \dfrac{n}{y}(\dfrac{{dy}}{{dx}}) - \dfrac{{m + n}}{{x + y}}\dfrac{{dy}}{{dx}} = \dfrac{{m + n}}{{x + y}} - \dfrac{m}{x}
Further simplifying we get (dydx)[nym+nx+y]=m+nx+ymx (\dfrac{{dy}}{{dx}})[\dfrac{n}{y} - \dfrac{{m + n}}{{x + y}}] = \dfrac{{m + n}}{{x + y}} - \dfrac{m}{x} (taking out the common values)
Now cross multiplying and solving the equation we have, (dydx)[nx+nymynyy(x+y)]=mx+nxmxmyx(x+y) (\dfrac{{dy}}{{dx}})[\dfrac{{nx + ny - my - ny}}{{y(x + y)}}] = \dfrac{{mx + nx - mx - my}}{{x(x + y)}}
(dydx)[nxmyy(x+y)]=nxmyx(x+y)\Rightarrow (\dfrac{{dy}}{{dx}})[\dfrac{{nx - my}}{{y(x + y)}}] = \dfrac{{nx - my}}{{x(x + y)}} (cancel out the common terms)
Hence, we get (dydx)[nxmyy(x+y)]=nxmyy(x+y)(dydx)=nxmyx(x+y)[y(x+y)nxmy](\dfrac{{dy}}{{dx}})[\dfrac{{nx - my}}{{y(x + y)}}] = \dfrac{{nx - my}}{{y(x + y)}} \Rightarrow (\dfrac{{dy}}{{dx}}) = \dfrac{{nx - my}}{{x(x + y)}}[\dfrac{{y(x + y)}}{{nx - my}}]
Canceling the common terms, we get (dydx)=nxmyx(x+y)[y(x+y)nxmy](dydx)=yx(\dfrac{{dy}}{{dx}}) = \dfrac{{nx - my}}{{x(x + y)}}[\dfrac{{y(x + y)}}{{nx - my}}] \Rightarrow (\dfrac{{dy}}{{dx}}) = \dfrac{y}{x}
Thus, we have (dydx)=yx(\dfrac{{dy}}{{dx}}) = \dfrac{y}{x}, since from the given question we have x=1,y=2x = 1,y = 2 and substituting the values we get (dydx)x=1,y=2=yx=212{(\dfrac{{dy}}{{dx}})_{x = 1,y = 2}} = \dfrac{y}{x} = \dfrac{2}{1} \Rightarrow 2
Therefore, the option B)2B)2 is correct.

Note: Differentiation and integration are inverse processes like a derivative of d(x2)dx=2x\dfrac{{d({x^2})}}{{dx}} = 2x and the integration is 2xdx=2x22x2\int {2xdx = \dfrac{{2{x^2}}}{2}} \Rightarrow {x^2}
The main concept used in the given problem is the chain rule and derivative of the logarithm function so we used logxm=mlogx\log {x^m} = m\log x and logarithm derivative function can be represented as ddxlogx=1x\dfrac{d}{{dx}}\log x = \dfrac{1}{x}
And chain rule can be represented as ddx(f(g(x))=f1(g(x))×g1(x)\dfrac{d}{{dx}}(f(g(x)) = {f^1}(g(x)) \times {g^1}(x) where f(x)=(m+n),g(x)=log(x+y)f(x) = (m + n),g(x) = \log (x + y)