Solveeit Logo

Question

Question: If we have an expression \(x = {e^t} \times sint,y = {e^t} \times cost,t\) is a parameter, then \(\d...

If we have an expression x=et×sint,y=et×cost,tx = {e^t} \times sint,y = {e^t} \times cost,t is a parameter, then d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}}at t = πt{\text{ }} = {\text{ }}\pi is equal to
1. 2e(π)2{e^{( - \pi )}}
2. 2e(π) - 2{e^{( - \pi )}}
3. 00
4. none of thesenone{\text{ }}of{\text{ }}these

Explanation

Solution

We have to find the double derivative of yy with respect to xx. We solve this using product rules and various basic derivative formulas of trigonometric functions , derivatives of exponential functions and derivatives of xn{x^n} . We firstly derivate the function of xx and yy with respect to separately by using product rules . Then by simplifying the expression we get the value of dydx\dfrac{{dy}}{{dx}} . And again differentiating dydx\dfrac{{dy}}{{dx}} with respect to xx to get the double derivative of yy with respect to xx.

Complete step-by-step solution:
Given :
x=et×sint,y=et×costx = {e^t} \times sint,y = {e^t} \times cost
As , we know
Derivative of product of two function is given by the following product rule :
d[f(x) × g(x)]dx =  d[f(x)]dx× g + f × d[g(x)]dx\dfrac{{d\left[ {f\left( x \right){\text{ }} \times {\text{ }}g\left( x \right)} \right]}}{{dx}}{\text{ }} = {\text{ }}\dfrac{{{\text{ }}d\left[ {f\left( x \right)} \right]}}{{dx}} \times {\text{ }}g{\text{ }} + {\text{ }}f{\text{ }} \times {\text{ }}\dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}
Also , ( derivative of xn=n×x(n1){x^n} = n \times {x^{(n - 1)}} )
( derivative of ex=ex{e^x} = {e^x} )
( Derivative of sin x = cos xsin{\text{ }}x{\text{ }} = {\text{ }}cos{\text{ }}x )
( Derivative of cos x =  sin xcos{\text{ }}x{\text{ }} = {\text{ }} - {\text{ }}sin{\text{ }}x )
Now , we have to derivate xx with respect to tt.
Using these derivatives , we get
dxdt=et[sint+cost]\dfrac{{dx}}{{dt}} = {e^t}[\sin t + \cos t] —— (1)(1)
Now , we have to derive yy with respect to tt.
Using these derivatives , we get
dydt=et[costsint]\dfrac{{dy}}{{dt}} = {e^t}[\cos t - \sin t] ——— (2)(2)
Dividing (2)(2) by (1)(1) , we get
 dydx= [dydt][dxdt ]{\text{ }}\dfrac{{dy}}{{dx}} = {\text{ }}\dfrac{{\left[ {\dfrac{{dy}}{{dt}}} \right]}}{{\left[ {\dfrac{{dx}}{{dt}}{\text{ }}} \right]}}
dydx=[et×(costsint)]/[et×(sint+cost)]\dfrac{{dy}}{{dx}} = [{e^t} \times (cost - sint)]/[{e^t} \times (sint + cost)]
Cancelling terms , we get
dydx =  ( cos t  sin t )( sin t + cos t )\dfrac{{dy}}{{dx}}{\text{ }} = {\text{ }}\dfrac{{{\text{ }}\left( {{\text{ }}cos{\text{ }}t{\text{ }} - {\text{ }}sin{\text{ }}t{\text{ }}} \right)}}{{\left( {{\text{ }}sin{\text{ }}t{\text{ }} + {\text{ }}cos{\text{ }}t{\text{ }}} \right)}}
Also , we know that
Derivative of quotient of two function is given by the following quotient rule :
d[f(x)g(x)]dx=[d[f(x)]dx×g(x)f(x)×d[g(x)]dx][g(x)]2\dfrac{{d[\dfrac{{f(x)}}{{g(x)}}]}}{{dx}} = \dfrac{{[\dfrac{{d[f(x)]}}{{dx}} \times g(x) - f(x) \times \dfrac{{d[g(x)]}}{{dx}}]}}{{{{[g(x)]}^2}}}
Using these derivatives , we get
d2ydx2=[(sint+cost)(sintcost)×dtdx(costsint)(costsint)×dtdx](sint+cost)2\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{[\dfrac{{(sint + cost)( - sint - cost) \times dt}}{{dx}} - \dfrac{{(cost - sint)(cost - sint) \times dt}}{{dx}}]}}{{{{(sint + cost)}^2}}}
On simplifying , we get
d2ydx2=(dtdx)×[(sint+cost)2(costsint)2](sint+cost)2\dfrac{{{d^2}y}}{{d{x^2}}} = (\dfrac{{dt}}{{dx}}) \times \dfrac{{[ - {{(sint + cost)}^2} - {{(cost - sint)}^2}]}}{{{{(sint + cost)}^2}}}
Expanding the term of square , using the formula
(a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab
(ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2ab
Now ,
d2ydx2=(dtdx)×[(sin2t+cos2t+2sint×cost)+(cos2t+sin2t2sint×cost)](sint+cost)2\dfrac{{{d^2}y}}{{d{x^2}}} = - (\dfrac{{dt}}{{dx}}) \times \dfrac{{[(si{n^2}t + co{s^2}t + 2sint \times cost) + (co{s^2}t + si{n^2}t - 2sint \times cost)]}}{{{{(sint + cost)}^2}}}
Also we know that (sin2x+cos2x=1)(si{n^2}x + co{s^2}x = 1)
Using the formula and cancelling the terms , we get
d2ydx2=2(dtdx)(sint+cost)2\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 2(\dfrac{{dt}}{{dx}})}}{{{{(sint + cost)}^2}}} —— (3)(3)
From (1)(1) , we get the value of dtdx\dfrac{{dt}}{{dx}}
dtdx=1[dxdt]\dfrac{{dt}}{{dx}} = \dfrac{1}{{\left[ {\dfrac{{dx}}{{dt}}} \right]}}
dtdx=1[et×(sint+cost)]\dfrac{{dt}}{{dx}} = \dfrac{1}{{[{e^t} \times (sint + cost)]}}
Putting value of dtdx\dfrac{{dt}}{{dx}} in (3)(3) , we get
d2ydx2=2[et×(sint+cost)3]\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 2}}{{[{e^t} \times {{(sint + cost)}^3}]}}—— (3)(3)
Put t = πt{\text{ }} = {\text{ }}\pi
d2ydx2=2[eπ×(sinπ+cosπ)3]\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 2}}{{[{e^\pi } \times {{(sin\pi + cos\pi )}^3}]}}
As we know that cos π = 1cos{\text{ }}\pi {\text{ }} = {\text{ }} - 1 and sin π = 0sin{\text{ }}\pi {\text{ }} = {\text{ }}0
Using the values of trigonometric functions , we get
d2ydx2=2[eπ×(01)3]\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 2}}{{[{e^\pi } \times {{(0 - 1)}^3}]}}
d2ydx2=2eπ\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{2}{{{e^\pi }}}
Further simplifying we get,
d2ydx2=2e(π)\dfrac{{{d^2}y}}{{d{x^2}}} = 2{e^{( - \pi )}}
Thus , the value of d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}}at  t = π\;t{\text{ }} = {\text{ }}\pi is 2×e(π)2 \times {e^{( - \pi )}}
Hence , the correct option is (1)\left( 1 \right).

Note: We differentiated yy with respect to xx to find dydx\dfrac{{dy}}{{dx}}. We could also write the y in terms of x by substituting the value of ete^t in starting of the solution and then we use differentiation formula of trigonometric function :
d[cos x]dx= sin x\dfrac{{d\left[ {cos{\text{ }}x} \right]}}{{dx}} = {\text{ }} - sin{\text{ }}x
d[sin x] dx = cos x\dfrac{{d\left[ {sin{\text{ }}x} \right]{\text{ }}}}{{dx}}{\text{ }} = {\text{ }}cos{\text{ }}x
d[xn]=nx(n1)d[{x^n}] = n{x^{(n - 1)}}
d[tanx]=sec2xd[\tan x] = se{c^2}x
We use the derivative according to the given problem .