Solveeit Logo

Question

Question: If we have an expression as \(y=A{{e}^{mx}}+B{{e}^{nx}}\) , show that \(\dfrac{{{d}^{2}}y}{d{{x}^{2}...

If we have an expression as y=Aemx+Benxy=A{{e}^{mx}}+B{{e}^{nx}} , show that d2ydx2(m+n)dydx+mny=0\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\left( m+n \right)\dfrac{dy}{dx}+mny=0

Explanation

Solution

First we will take the expression given in the question that is y=Aemx+Benxy=A{{e}^{mx}}+B{{e}^{nx}} and then we will find the first order derivative and the second order derivative using f(x)=exf(x)=exf\left( x \right)={{e}^{x}}\Rightarrow f'\left( x \right)={{e}^{x}} and the power rule that is f(x)=xnf(x)=nxn1f\left( x \right)={{x}^{n}}\Rightarrow f'\left( x \right)=n{{x}^{n-1}} , then we will put the values of the first derivative and the second order derivative in the Left hand side expression of d2ydx2(m+n)dydx+mny=0\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\left( m+n \right)\dfrac{dy}{dx}+mny=0, and then ultimately prove it equal to 00 .

Complete step-by-step solution:
Let’s take y=Aemx+Benxy=A{{e}^{mx}}+B{{e}^{nx}} , now we will differentiate this expression with respect to the variable xx
dydx= d(Aemx+Benx)dx\dfrac{dy}{dx}=~\dfrac{d\left( A{{e}^{mx}}+B{{e}^{nx}} \right)}{dx} ,
Now we know that, d(f(x)+g(x))dx=d(f(x))dx+d(g(x))dx\dfrac{d\left( f\left( x \right)+g\left( x \right) \right)}{dx}=\dfrac{d\left( f\left( x \right) \right)}{dx}+\dfrac{d\left( g\left( x \right) \right)}{dx}
Therefore we have
dydx= d(Aemx+Benx)dx=d(Aemx)dx+d(Benx)dx\dfrac{dy}{dx}=~\dfrac{d\left( A{{e}^{mx}}+B{{e}^{nx}} \right)}{dx}=\dfrac{d\left( A{{e}^{mx}} \right)}{dx}+\dfrac{d\left( B{{e}^{nx}} \right)}{dx} ,
Now we will take out the constant:
d(Aemx)dx+d(Benx)dx=Ad(emx)dx+Bd(enx)dx\dfrac{d\left( A{{e}^{mx}} \right)}{dx}+\dfrac{d\left( B{{e}^{nx}} \right)}{dx}=A\dfrac{d\left( {{e}^{mx}} \right)}{dx}+B\dfrac{d\left( {{e}^{nx}} \right)}{dx} ,
We already know that the differentiation of: f(x)=exf(x)=exf\left( x \right)={{e}^{x}}\Rightarrow f'\left( x \right)={{e}^{x}}
Therefore, we can write as
Ad(emx)dx+Bd(enx)dx=Aemxd(mx)dx+Benxd(nx)dxA\dfrac{d\left( {{e}^{mx}} \right)}{dx}+B\dfrac{d\left( {{e}^{nx}} \right)}{dx}=A{{e}^{mx}}\dfrac{d\left( mx \right)}{dx}+B{{e}^{nx}}\dfrac{d\left( nx \right)}{dx}
It is standard according to the power rule that is f(x)=xnf(x)=nxn1f\left( x \right)={{x}^{n}}\Rightarrow f'\left( x \right)=n{{x}^{n-1}}
Therefore, applying it, we get
Aemxd(mx)dx+Benxd(nx)dx=Aemxm+Benxn Amemx+Bnenx \begin{aligned} & A{{e}^{mx}}\dfrac{d\left( mx \right)}{dx}+B{{e}^{nx}}\dfrac{d\left( nx \right)}{dx}=A{{e}^{mx}}m+B{{e}^{nx}}n \\\ & \Rightarrow Am{{e}^{mx}}+Bn{{e}^{nx}} \\\ \end{aligned}
Therefore, dydx=Amemx+Bnenx ...... Equation 1.\dfrac{dy}{dx}=Am{{e}^{mx}}+Bn{{e}^{nx}}\text{ }......\text{ Equation 1}\text{.}
Now, we will again differentiate in order to find the second derivative:
ddx(dydx)=d(Amemx+Bnenx)dx\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)}{dx}
Now we know that, d(f(x)+g(x))dx=d(f(x))dx+d(g(x))dx\dfrac{d\left( f\left( x \right)+g\left( x \right) \right)}{dx}=\dfrac{d\left( f\left( x \right) \right)}{dx}+\dfrac{d\left( g\left( x \right) \right)}{dx}
Therefore,
d2ydx2= d(Amemx+Bnenx)dx=d(Amemx)dx+d(Bnenx)dx\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=~\dfrac{d\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)}{dx}=\dfrac{d\left( Am{{e}^{mx}} \right)}{dx}+\dfrac{d\left( Bn{{e}^{nx}} \right)}{dx} ,
Now we will take out the constant:
d(Amemx)dx+d(Bnenx)dx=Amd(emx)dx+Bnd(enx)dx\dfrac{d\left( Am{{e}^{mx}} \right)}{dx}+\dfrac{d\left( Bn{{e}^{nx}} \right)}{dx}=Am\dfrac{d\left( {{e}^{mx}} \right)}{dx}+Bn\dfrac{d\left( {{e}^{nx}} \right)}{dx} ,
We already know that the differentiation of: f(x)=exf(x)=exf\left( x \right)={{e}^{x}}\Rightarrow f'\left( x \right)={{e}^{x}}
Therefore,
Amd(emx)dx+Bnd(enx)dx=Amemxd(mx)dx+Bnenxd(nx)dxAm\dfrac{d\left( {{e}^{mx}} \right)}{dx}+Bn\dfrac{d\left( {{e}^{nx}} \right)}{dx}=Am{{e}^{mx}}\dfrac{d\left( mx \right)}{dx}+Bn{{e}^{nx}}\dfrac{d\left( nx \right)}{dx}
It is standard according to the power rule that f(x)=xnf(x)=nxn1f\left( x \right)={{x}^{n}}\Rightarrow f'\left( x \right)=n{{x}^{n-1}}
Therefore:
Amemxd(mx)dx+Bnenxd(nx)dx=Aemxm2+Benxn2 Am2emx+Bn2enx \begin{aligned} & Am{{e}^{mx}}\dfrac{d\left( mx \right)}{dx}+Bn{{e}^{nx}}\dfrac{d\left( nx \right)}{dx}=A{{e}^{mx}}{{m}^{2}}+B{{e}^{nx}}{{n}^{2}} \\\ & \Rightarrow A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}} \\\ \end{aligned}
Therefore, d2ydx2=Am2emx+Bn2enx ..........Equation 2.\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}}\text{ }..........\text{Equation 2}\text{.}
Now we are given in the question that: d2ydx2(m+n)dydx+mny=0\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\left( m+n \right)\dfrac{dy}{dx}+mny=0
We will now solve the left hand side of the expression that is:
d2ydx2(m+n)dydx+mny\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\left( m+n \right)\dfrac{dy}{dx}+mny ,
We will now put the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} from equation 2 and the value of dydx\dfrac{dy}{dx} from equation 1,
d2ydx2(m+n)dydx+mny =(Am2emx+Bn2enx)(m+n)(Amemx+Bnenx)+mn(Aemx+Benx) =(Am2emx+Bn2enx)m(Amemx+Bnenx)n(Amemx+Bnenx)+mnAemx+mnBenx =Am2emx+Bn2enxAm2emxBmnenxAmnemxBn2enx+Amnemx+Bmnenx =0=R.H.S. \begin{aligned} & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\left( m+n \right)\dfrac{dy}{dx}+mny \\\ & =\left( A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}} \right)-\left( m+n \right)\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)+mn\left( A{{e}^{mx}}+B{{e}^{nx}} \right) \\\ & =\left( A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}} \right)-m\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)-n\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)+mnA{{e}^{mx}}+mnB{{e}^{nx}} \\\ & =A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}}-A{{m}^{2}}{{e}^{mx}}-Bmn{{e}^{nx}}-Amn{{e}^{mx}}-B{{n}^{2}}{{e}^{nx}}+Amn{{e}^{mx}}+Bmn{{e}^{nx}} \\\ & =0=R.H.S. \\\ \end{aligned}
Hence Proved.

Note: Students can make the mistake while doing the calculation, you must be careful about the signs in the calculation as it can be a bit messy. Also note that in functions like f(x)=eg(x)f(x)=eg(x)g(x)f\left( x \right)={{e}^{g\left( x \right)}}\Rightarrow f'\left( x \right)={{e}^{g\left( x \right)}}g'\left( x \right) . Remember to mention the properties that you use while proving any expression.