Solveeit Logo

Question

Question: If we have an expression as \({{x}^{2}}+6xy+{{y}^{2}}=10\) then show that \(\dfrac{{d^{2}y}}{d{{x}^{...

If we have an expression as x2+6xy+y2=10{{x}^{2}}+6xy+{{y}^{2}}=10 then show that d2ydx2=80(3x+y)3\dfrac{{d^{2}y}}{d{{x}^{2}}}=\dfrac{80}{{{\left( 3x+y \right)}^{3}}}. $$$$

Explanation

Solution

We begin by differentiating the given equation x2+6xy+y2=10{{x}^{2}}+6xy+{{y}^{2}}=10 implicitly with respect to xx and find the expression for dydx\dfrac{dy}{dx}. We differentiate dydx\dfrac{dy}{dx} with respect to xx to find d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}. We simplify until we get an expression of x2+6xy+y2{{x}^{2}}+6xy+{{y}^{2}} in the numerator where we put the given values to conclude the proof. We use the sum ruleddx(f+g)=ddxf+ddxg\dfrac{d}{dx}\left( f+g \right)=\dfrac{d}{dx}f+\dfrac{d}{dx}g, the product rule ddx(fg)=gddxf+fddxg\dfrac{d}{dx}\left( fg \right)=g\dfrac{d}{dx}f+f\dfrac{d}{dx}g, the quotient rule ddx(fg)=gddxffddxg(g)2 \dfrac{d}{dx}\left( \dfrac{f}{g} \right)=\dfrac{g\dfrac{d}{dx}f-f\dfrac{d}{dx}g}{{{\left( g \right)}^{2}}} and the chain rule ddxf(g(x))=(ddxf(g(x)))×(ddxg(x))\dfrac{d}{dx}f\left( g\left( x \right) \right)=\left( \dfrac{d}{dx}f\left( g\left( x \right) \right) \right)\times \left( \dfrac{d}{dx}g\left( x \right) \right) to find derivatives.

Complete step-by-step solution
We know that an explicit equation can be expressed yy in terms of xx but for an implicit equation yycannot be expressed in terms of xx. The given equation is an implicit equation in xx and yywhich is
x2+6xy+y2=10{{x}^{2}}+6xy+{{y}^{2}}=10
We are asked to provedy2dx2=80(3x+y)3\dfrac{d{{y}^{2}}}{d{{x}^{2}}}=\dfrac{80}{{{\left( 3x+y \right)}^{3}}}. We know that when we differentiate implicitly either with respect to xx or with respect to yy; we use the chain rule to treat xx or yy as a function of yy or xx respectively. Since we have to find d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}; let us differentiate the given equation by xx.We have;
ddx(x2+6xy+y2)=0\Rightarrow \dfrac{d}{dx}\left( {{x}^{2}}+6xy+{{y}^{2}} \right)=0
We use sum rule of derivative and have;
ddxx2+ddx6xy+ddxy2=0\Rightarrow \dfrac{d}{dx}{{x}^{2}}+\dfrac{d}{dx}6xy+\dfrac{d}{dx}{{y}^{2}}=0
We use product rule of differentiation for ddx6xy\dfrac{d}{dx}6xy and chain rule for ddxy2\dfrac{d}{dx}{{y}^{2}} to have;

& \Rightarrow \dfrac{d}{dx}{{x}^{2}}+6\left( y\dfrac{d}{dx}x+x\dfrac{d}{dx}y \right)+\dfrac{d}{dx}{{y}^{2}}=0 \\\ & \Rightarrow 2x+6\left( y+x\dfrac{dy}{dx} \right)+2y\dfrac{dy}{dx}=0 \\\ & \Rightarrow 2x+6y+6x\dfrac{dy}{dx}+2y\dfrac{dy}{dx}=0 \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{-\left( 2x+6y \right)}{\left( 6x+2y \right)}=-\dfrac{x+3y}{3x+y} \\\ \end{aligned}$$ We differentiate the above once again with respect to $x$ and represent the derivatives as ${{y}^{'}},{{y}^{''}}$. We have $$\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\dfrac{-\left( x+3y \right)}{3x+y}$$ We use the quotient rule of differentiation in the above step to differentiate the expression at the right hand side to have; $$\begin{aligned} & \Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{\left( 3x+y \right)\dfrac{d}{dx}-\left( x+3y \right)-\left( -\left( x+3y \right) \right)\dfrac{d}{dx}\left( 3x+y \right)}{{{\left( 3x+y \right)}^{2}}} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-\left( 3x+y \right)\left( 1+3\dfrac{dy}{dx} \right)+\left( x+3y \right)\left( 3+\dfrac{dy}{dx} \right)}{{{\left( 3x+y \right)}^{2}}} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\left( 3x+y \right)\left( 1+3\dfrac{dy}{dx} \right)-\left( x+3y \right)\left( 3+\dfrac{dy}{dx} \right)}{{{\left( 3x+y \right)}^{2}}} \\\ \end{aligned}$$ We put the obtained expression of $\dfrac{dy}{dx}$ in the above step to have; $$\begin{aligned} & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\left( 3x+y \right)\left( 1-3\times \dfrac{x+3y}{3x+y} \right)-\left( x+3y \right)\left( 3-\dfrac{x+3y}{3x+y} \right)}{{{\left( 3x+y \right)}^{2}}} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\left( 3x+y \right)\left( \dfrac{3x+y-3x-9y}{3x+y} \right)-\left( x+3y \right)\left( \dfrac{9x+3y-x-3y}{3x+y} \right)}{{{\left( 3x+y \right)}^{2}}} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\left( 3x+y \right)\left( \dfrac{-8y}{3x+y} \right)-\left( x+3y \right)\left( \dfrac{8x}{3x+y} \right)}{{{\left( 3x+y \right)}^{2}}} \\\ \end{aligned}$$ Let us take $\dfrac{-8}{3x+y}$ common in the numerator and have, $$\begin{aligned} & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\dfrac{-8}{3x+y}\left\\{ \left( 3x+y \right)y+\left( x+3y \right)x \right\\}}{{{\left( 3x+y \right)}^{2}}} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=8\dfrac{3xy+{{y}^{2}}+{{x}^{2}}+3xy}{{{\left( 3x+y \right)}^{3}}} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{8\left( {{x}^{2}}+6xy+{{y}^{2}} \right)}{{{\left( 3x+y \right)}^{3}}} \\\ \end{aligned}$$ We put back the given value ${{x}^{2}}+6xy+{{y}^{2}}=10$ in the above step to have; $$\begin{aligned} & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{8\times 10}{{{\left( 3x+y \right)}^{3}}} \\\ & \therefore \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{80}{{{\left( 3x+y \right)}^{3}}} \\\ \end{aligned}$$ Hence the given statement is proved. $$$$ **Note:** We note that the statement of proof is a representation of the given equation as a differential equation which has order (highest order derivative) 2 and degree 3. We note the given equation is a quadratic equation of two variable whose general form is given by ${{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$. Since ${{h}^{2}}-ab>0$and it is a curve the given equation is an equation of a hyperbola.