Solveeit Logo

Question

Question: If we have an expression as \[{{U}_{n}}=\sin n\theta {{\sec }^{n}}\theta ,\text{ }{{V}_{n}}=\cos n\t...

If we have an expression as Un=sinnθsecnθ, Vn=cosnθsecnθ1{{U}_{n}}=\sin n\theta {{\sec }^{n}}\theta ,\text{ }{{V}_{n}}=\cos n\theta {{\sec }^{n}}\theta \ne 1 , then VnVn1Un1+1nUnVn\dfrac{{{V}_{n}}-{{V}_{n-1}}}{{{U}_{n-1}}}+\dfrac{1}{n}\dfrac{{{U}_{n}}}{{{V}_{n}}} is equal to
A. 0
B. tanθ\tan \theta
C. tanθ+tannθn-\tan \theta +\dfrac{\tan n\theta }{n}
D. tanθ+tannθn\tan \theta +\dfrac{\tan n\theta }{n}

Explanation

Solution

To find the value of VnVn1Un1+1nUnVn\dfrac{{{V}_{n}}-{{V}_{n-1}}}{{{U}_{n-1}}}+\dfrac{1}{n}\dfrac{{{U}_{n}}}{{{V}_{n}}} , we will first find Un1 and Vn1{{U}_{n-1}}\text{ and }{{V}_{n-1}} by substituting n1n-1 for nn in Un=sinnθsecnθ and Vn=cosnθsecnθ{{U}_{n}}=\sin n\theta {{\sec }^{n}}\theta \text{ and }{{V}_{n}}=\cos n\theta {{\sec }^{n}}\theta . Then substitute these in VnVn1Un1+1nUnVn\dfrac{{{V}_{n}}-{{V}_{n-1}}}{{{U}_{n-1}}}+\dfrac{1}{n}\dfrac{{{U}_{n}}}{{{V}_{n}}} ., that is, cosnθsecnθcos((n1)θ)secn1θsin((n1)θ)secn1θ+1nsinnθsecnθcosnθsecnθ\dfrac{\cos n\theta {{\sec }^{n}}\theta -\cos \left( \left( n-1 \right)\theta \right){{\sec }^{n-1}}\theta }{\sin \left( \left( n-1 \right)\theta \right){{\sec }^{n-1}}\theta }+\dfrac{1}{n}\dfrac{\sin n\theta {{\sec }^{n}}\theta }{\cos n\theta {{\sec }^{n}}\theta } . Solve this using trigonometric identities. We will get secn1θ[cosnθsecθcos((n1)θ)]sin((n1)θ)secn1θ+1nsinnθsecnθcosnθsecnθ\dfrac{{{\sec }^{n-1}}\theta \left[ \cos n\theta \sec \theta -\cos \left( \left( n-1 \right)\theta \right) \right]}{\sin \left( \left( n-1 \right)\theta \right){{\sec }^{n-1}}\theta }+\dfrac{1}{n}\dfrac{\sin n\theta {{\sec }^{n}}\theta }{\cos n\theta {{\sec }^{n}}\theta } . Solving this further, and writing sec in terms of cos, we will get cosnθcosθcos((n1)θ)cosθsin((n1)θ)+1nsinnθcosnθ\dfrac{\cos n\theta -\cos \theta \cos \left( \left( n-1 \right)\theta \right)}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\dfrac{\sin n\theta }{\cos n\theta } . Change the equation to use the formula cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) . We will get cosnθ12[cosnθ+cos((n2)θ)]cosθsin((n1)θ)+1ntannθ\dfrac{\cos n\theta -\dfrac{1}{2}\left[ \cos n\theta +\cos \left( \left( n-2 \right)\theta \right) \right]}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\tan n\theta . Let us solve this to get 12[cosnθcos((n2)θ)]cosθsin((n1)θ)+1ntannθ\dfrac{\dfrac{1}{2}\left[ \cos n\theta -\cos \left( \left( n-2 \right)\theta \right) \right]}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\tan n\theta . Use the identity cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) and solve to get tanθ+1ntannθ-\tan \theta +\dfrac{1}{n}\tan n\theta .

Complete step-by-step solution:
We have to find the value of VnVn1Un1+1nUnVn\dfrac{{{V}_{n}}-{{V}_{n-1}}}{{{U}_{n-1}}}+\dfrac{1}{n}\dfrac{{{U}_{n}}}{{{V}_{n}}} . It is given that
Un=sinnθsecnθ...(i){{U}_{n}}=\sin n\theta {{\sec }^{n}}\theta ...(i)
Let us substitute n1n-1 for nn . we will get
Un1=sin((n1)θ)secn1θ...(ii){{U}_{n-1}}=\sin \left( \left( n-1 \right)\theta \right){{\sec }^{n-1}}\theta ...(ii)
It is also given that
Vn=cosnθsecnθ...(iii){{V}_{n}}=\cos n\theta {{\sec }^{n}}\theta ...(iii)
Let us substitute n1n-1 for nn . we will get
Vn1=cos((n1)θ)secn1θ...(iv){{V}_{n-1}}=\cos \left( \left( n-1 \right)\theta \right){{\sec }^{n-1}}\theta ...(iv)
We have VnVn1Un1+1nUnVn\dfrac{{{V}_{n}}-{{V}_{n-1}}}{{{U}_{n-1}}}+\dfrac{1}{n}\dfrac{{{U}_{n}}}{{{V}_{n}}}
Now, we can substitute the (i),(ii),(iii) and (iv) in the above equation. That is
cosnθsecnθcos((n1)θ)secn1θsin((n1)θ)secn1θ+1nsinnθsecnθcosnθsecnθ\dfrac{\cos n\theta {{\sec }^{n}}\theta -\cos \left( \left( n-1 \right)\theta \right){{\sec }^{n-1}}\theta }{\sin \left( \left( n-1 \right)\theta \right){{\sec }^{n-1}}\theta }+\dfrac{1}{n}\dfrac{\sin n\theta {{\sec }^{n}}\theta }{\cos n\theta {{\sec }^{n}}\theta }
Let us multiply and divide the cosnθsecnθ\cos n\theta {{\sec }^{n}}\theta by secθ\sec \theta . We will get
cosnθsecnθ×secθsecθcos((n1)θ)secn1θsin((n1)θ)secn1θ+1nsinnθsecnθcosnθsecnθ\dfrac{\cos n\theta {{\sec }^{n}}\theta \times \dfrac{\sec \theta }{\sec \theta }-\cos \left( \left( n-1 \right)\theta \right){{\sec }^{n-1}}\theta }{\sin \left( \left( n-1 \right)\theta \right){{\sec }^{n-1}}\theta }+\dfrac{1}{n}\dfrac{\sin n\theta {{\sec }^{n}}\theta }{\cos n\theta {{\sec }^{n}}\theta }
We know that aman=amn\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}} . Hence, the above equation can be written as
cosnθsecn1θ×secθcos((n1)θ)secn1θsin((n1)θ)secn1θ+1nsinnθsecnθcosnθsecnθ\dfrac{\cos n\theta {{\sec }^{n-1}}\theta \times \sec \theta -\cos \left( \left( n-1 \right)\theta \right){{\sec }^{n-1}}\theta }{\sin \left( \left( n-1 \right)\theta \right){{\sec }^{n-1}}\theta }+\dfrac{1}{n}\dfrac{\sin n\theta {{\sec }^{n}}\theta }{\cos n\theta {{\sec }^{n}}\theta }
Let us take secn1θ{{\sec }^{n-1}}\theta common from the numerator of first term. We will get
secn1θ[cosnθsecθcos((n1)θ)]sin((n1)θ)secn1θ+1nsinnθsecnθcosnθsecnθ\dfrac{{{\sec }^{n-1}}\theta \left[ \cos n\theta \sec \theta -\cos \left( \left( n-1 \right)\theta \right) \right]}{\sin \left( \left( n-1 \right)\theta \right){{\sec }^{n-1}}\theta }+\dfrac{1}{n}\dfrac{\sin n\theta {{\sec }^{n}}\theta }{\cos n\theta {{\sec }^{n}}\theta }
Now, we can cancel secn1θ{{\sec }^{n-1}}\theta from the numerator and denominator of the first term. That is
cosnθsecθcos((n1)θ)sin((n1)θ)+1nsinnθsecnθcosnθsecnθ\dfrac{\cos n\theta \sec \theta -\cos \left( \left( n-1 \right)\theta \right)}{\sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\dfrac{\sin n\theta {{\sec }^{n}}\theta }{\cos n\theta {{\sec }^{n}}\theta }
We know that secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } . Hence, the above equation becomes
cosnθcosθcos((n1)θ)sin((n1)θ)+1nsinnθsecnθcosnθsecnθ\dfrac{\dfrac{\cos n\theta }{\cos \theta }-\cos \left( \left( n-1 \right)\theta \right)}{\sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\dfrac{\sin n\theta {{\sec }^{n}}\theta }{\cos n\theta {{\sec }^{n}}\theta }
This can be written as
cosnθcosθcos((n1)θ)cosθsin((n1)θ)+1nsinnθsecnθcosnθsecnθ\dfrac{\cos n\theta -\cos \theta \cos \left( \left( n-1 \right)\theta \right)}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\dfrac{\sin n\theta {{\sec }^{n}}\theta }{\cos n\theta {{\sec }^{n}}\theta }
Meanwhile, let us solve the second term. secnθ{{\sec }^{n}}\theta can be cancelled from numerator and denominator. We will get
cosnθcosθcos((n1)θ)cosθsin((n1)θ)+1nsinnθcosnθ\dfrac{\cos n\theta -\cos \theta \cos \left( \left( n-1 \right)\theta \right)}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\dfrac{\sin n\theta }{\cos n\theta }
We know that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } . hence, the above equation becomes
cosnθcosθcos((n1)θ)cosθsin((n1)θ)+1ntannθ\dfrac{\cos n\theta -\cos \theta \cos \left( \left( n-1 \right)\theta \right)}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\tan n\theta
Let us multiply and divide cosθcos((n1)θ)\cos \theta \cos \left( \left( n-1 \right)\theta \right) by 2. We will get
cosnθ22cosθcos((n1)θ)cosθsin((n1)θ)+1ntannθ\dfrac{\cos n\theta -\dfrac{2}{2}\cos \theta \cos \left( \left( n-1 \right)\theta \right)}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\tan n\theta
We know that cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) . Hence, we can write the above form as
cosnθ12[cosnθ+cos((n2)θ)]cosθsin((n1)θ)+1ntannθ\dfrac{\cos n\theta -\dfrac{1}{2}\left[ \cos n\theta +\cos \left( \left( n-2 \right)\theta \right) \right]}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\tan n\theta
Let us now expand the term 12[cosnθ+cos((n2)θ)]\dfrac{1}{2}\left[ \cos n\theta +\cos \left( \left( n-2 \right)\theta \right) \right] . We will get
cosnθ12cosnθ12cos((n2)θ)cosθsin((n1)θ)+1ntannθ\dfrac{\cos n\theta -\dfrac{1}{2}\cos n\theta -\dfrac{1}{2}\cos \left( \left( n-2 \right)\theta \right)}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\tan n\theta
Solving the numerator of first term, we will get
12cosnθ12cos((n2)θ)cosθsin((n1)θ)+1ntannθ\dfrac{\dfrac{1}{2}\cos n\theta -\dfrac{1}{2}\cos \left( \left( n-2 \right)\theta \right)}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\tan n\theta
Now let us take 12\dfrac{1}{2} common from the numerator of first term. We will get
12[cosnθcos((n2)θ)]cosθsin((n1)θ)+1ntannθ\dfrac{\dfrac{1}{2}\left[ \cos n\theta -\cos \left( \left( n-2 \right)\theta \right) \right]}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\tan n\theta
We know that cosAcosB=2sin(A+B2)sin(BA2)\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)
12[2sin[nθ+(n2)θ2]sin((n2)θnθ2)]cosθsin((n1)θ)+1ntannθ\dfrac{\dfrac{1}{2}\left[ 2\sin \left[ \dfrac{n\theta +\left( n-2 \right)\theta }{2} \right]\sin \left( \dfrac{\left( n-2 \right)\theta -n\theta }{2} \right) \right]}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\tan n\theta
This can be written as

& \dfrac{\dfrac{1}{2}\left[ 2\sin \left( \dfrac{2n\theta -2\theta }{2} \right)\sin \left( \dfrac{-2\theta }{2} \right) \right]}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\tan n\theta \\\ & =\dfrac{\dfrac{1}{2}\left[ 2\sin \left( n\theta -\theta \right)\sin \left( -\theta \right) \right]}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\tan n\theta \\\ \end{aligned}$$ Let us solve this further by cancelling 2 from the numerator of first term and taking $\theta $ outside from $$\sin \left( n\theta -\theta \right)$$ . $$\dfrac{\sin \left( \left( n-1 \right)\theta \right)\sin \left( -\theta \right)}{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\tan n\theta $$ We know that $\sin \left( -\theta \right)=-\sin \theta $ . Hence, the above equation becomes $$\dfrac{\sin \left( \left( n-1 \right)\theta \right)\times -\sin \theta }{\cos \theta \sin \left( \left( n-1 \right)\theta \right)}+\dfrac{1}{n}\tan n\theta $$ Let us cancel the common terms from the first term. We will get $$\dfrac{-\sin \theta }{\cos \theta }+\dfrac{1}{n}\tan n\theta $$ We know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ . Hence, we will get $$-\tan \theta +\dfrac{1}{n}\tan n\theta $$ $$=-\tan \theta +\dfrac{\tan n\theta }{n}$$ Hence, the correct option is C. **Note:** You must know the trigonometric identities and basic conversions to solve this question. You may write the formula for $\cos A+\cos B$ as $\cos A+\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$ . This is wrong. You may also make mistake when writing the formula for $\cos A-\cos B$ as $\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$ . Also you may write $\sin \left( -\theta \right)=-\cos \theta $ .