Solveeit Logo

Question

Question: If we have an expression as \(u = \log \tan \left[ {\dfrac{\pi }{4} + \dfrac{x}{2}} \right]\) then, ...

If we have an expression as u=logtan[π4+x2]u = \log \tan \left[ {\dfrac{\pi }{4} + \dfrac{x}{2}} \right] then, coshu=\cosh u =
1. secx\sec x
2. cosecx\operatorname{cosec} x
3. tanx\tan x
4. sinx\sin x

Explanation

Solution

We know that the hyperbolic function f(x)=coshxf\left( x \right) = \cosh x is defined as
coshx=ex+ex2\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}
coshu=eu+eu2\Rightarrow \cosh u = \dfrac{{{e^u} + {e^{ - u}}}}{2}
It is given that u=logtan[π4+x2]u = \log \tan \left[ {\dfrac{\pi }{4} + \dfrac{x}{2}} \right]
We know that according to the property of logarithm,
if logab=x{\log _a}b = x then b=axb = {a^x}
Therefore if u=logetan[π4+x2]u = {\log _e}\tan \left[ {\dfrac{\pi }{4} + \dfrac{x}{2}} \right] then eu=tan[π4+x2]{e^u} = \tan \left[ {\dfrac{\pi }{4} + \dfrac{x}{2}} \right]
Substitute the value of eu{e^u} in equation coshu=eu+eu2\cosh u = \dfrac{{{e^u} + {e^{ - u}}}}{2} and then simplify the equation.

Complete step-by-step solution:
It is given that
u=logtan[π4+x2]u = \log \tan \left[ {\dfrac{\pi }{4} + \dfrac{x}{2}} \right]
eu=tan[π4+x2]\Rightarrow {e^u} = \tan \left[ {\dfrac{\pi }{4} + \dfrac{x}{2}} \right]
We are asked to find the value of coshu\cosh u
We know that coshu=eu+eu2\cosh u = \dfrac{{{e^u} + {e^{ - u}}}}{2}
coshu=eu2+12eu\Rightarrow \cosh u = \dfrac{{{e^u}}}{2} + \dfrac{1}{{2{e^u}}}
Taking L.C.M we get,
coshu=e2u+12eu\cosh u = \dfrac{{{e^{2u}} + 1}}{{2{e^u}}}
Substituting the value of eu{e^u} in above equation, we get
coshu=tan2(π4+x2)+12tan(π4+x2)(2)\cosh u = \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right) + 1}}{{2\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)}} - - - - - \left( 2 \right)
We know that from trigonometric identity,
sin2x=2tanx1+tan2x\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}
Taking reciprocal we get,
1sin2x=1+tan2x2tanx\dfrac{1}{{\sin 2x}} = \dfrac{{1 + {{\tan }^2}x}}{{2\tan x}}
1sin(π2+x)=tan2(π4+x2)+12tan(π4+x2)\therefore \dfrac{1}{{\sin \left( {\dfrac{\pi }{2} + x} \right)}} = \dfrac{{{{\tan }^2}\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right) + 1}}{{2\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)}}
coshu=1sin(π2+x)\Rightarrow \cosh u = \dfrac{1}{{\sin \left( {\dfrac{\pi }{2} + x} \right)}}
We know that sin(π2+x)=cosx\sin \left( {\dfrac{\pi }{2} + x} \right) = \cos x
coshu=1cosx\therefore \cosh u = \dfrac{1}{{\cos x}}
coshu=secx\Rightarrow \cosh u = \sec x (1cosx=secx)\left( {\because \dfrac{1}{{\cos x}} = \sec x} \right)
Hence the answer is secx\sec x

Note: This problem can be solved alternatively.
If u=logetan[π4+x2]u = {\log _e}\tan \left[ {\dfrac{\pi }{4} + \dfrac{x}{2}} \right] then eu=tan[π4+x2]{e^u} = \tan \left[ {\dfrac{\pi }{4} + \dfrac{x}{2}} \right]
We know that tan(x+y)=tanx+tany1tanxtany\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}
eu=tan(π4)+tan(x2)1tan(π4)tan(x2)\therefore {e^u} = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan \left( {\dfrac{x}{2}} \right)}}{{1 - \tan \left( {\dfrac{\pi }{4}} \right)\tan \left( {\dfrac{x}{2}} \right)}}
eu=1+tan(x2)1tan(x2)\Rightarrow {e^u} = \dfrac{{1 + \tan \left( {\dfrac{x}{2}} \right)}}{{1 - \tan \left( {\dfrac{x}{2}} \right)}} (tan(π4)=1)\left( {\because \tan \left( {\dfrac{\pi }{4}} \right) = 1} \right)
Substituting the value of eu{e^u} in coshu=e2u+12eu\cosh u = \dfrac{{{e^{2u}} + 1}}{{2{e^u}}} , we get
coshu=(1+tan(x2)1tan(x2))2+12(1+tan(x2)1tan(x2))\cosh u = \dfrac{{{{\left( {\dfrac{{1 + \tan \left( {\dfrac{x}{2}} \right)}}{{1 - \tan \left( {\dfrac{x}{2}} \right)}}} \right)}^2} + 1}}{{2\left( {\dfrac{{1 + \tan \left( {\dfrac{x}{2}} \right)}}{{1 - \tan \left( {\dfrac{x}{2}} \right)}}} \right)}}
Expanding and then simplifying we get
coshu=1(1tan2(π2)1+tan2(π2))\cosh u = \dfrac{1}{{\left( {\dfrac{{1 - {{\tan }^2}\left( {\dfrac{\pi }{2}} \right)}}{{1 + {{\tan }^2}\left( {\dfrac{\pi }{2}} \right)}}} \right)}}
We know that cos2x=1tan2x1+tan2x\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}
coshu=1cosx\therefore \cosh u = \dfrac{1}{{\cos x}}
coshu=secx\Rightarrow \cosh u = \sec x