Solveeit Logo

Question

Question: If we have an expression as \[{{\tan }^{-1}}x-{{\cot }^{-1}}x={{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3...

If we have an expression as tan1xcot1x=tan1(13){{\tan }^{-1}}x-{{\cot }^{-1}}x={{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right), x>0x>0, find the value of xx and hence find the value of sec1(2x){{\sec }^{-1}}\left( \dfrac{2}{x} \right).

Explanation

Solution

We are given a trigonometric expression and we have to solve the given expression for the value of xx. We will be using the formula cot1x=π2tan1x{{\cot }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}x, to make the given expression in terms of tangent function and then we will solve for xx. After getting the value of xx, we will substitute the value of xx in sec1(2x){{\sec }^{-1}}\left( \dfrac{2}{x} \right) and then find the required value. Hence, we will have done the required solution.

Complete step by step solution:
According to the given question, we are given a trigonometric expression in terms of tangent and cotangent function, we have to solve the expression and find the value of xx.
The expression we have is,
tan1xcot1x=tan1(13){{\tan }^{-1}}x-{{\cot }^{-1}}x={{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)----(1)
To solve the expression, we will have to make the expression in terms of either of the one function only. So, we will use the formula, tan1x+cot1x=π2{{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2}. We can see that the RHS of the equation (1) has the term in tangent function, so we will convert the cotangent function in the LHS to tangent function, using the above formula. We get,
tan1x(π2tan1x)=tan1(13)\Rightarrow {{\tan }^{-1}}x-\left( \dfrac{\pi }{2}-{{\tan }^{-1}}x \right)={{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)----(2)
Opening up the brackets in equation (2), also we know that, tanπ6=13\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}. So, we get the new expression as,
tan1xπ2+tan1x=π6\Rightarrow {{\tan }^{-1}}x-\dfrac{\pi }{2}+{{\tan }^{-1}}x=\dfrac{\pi }{6}
Adding up the similar term. We will now separate the trigonometric functions and the angles, so we will get,
2tan1xπ2=π6\Rightarrow 2{{\tan }^{-1}}x-\dfrac{\pi }{2}=\dfrac{\pi }{6}
2tan1x=π6+π2\Rightarrow 2{{\tan }^{-1}}x=\dfrac{\pi }{6}+\dfrac{\pi }{2}
On solving further, we get the expression as,
2tan1x=π+3π6\Rightarrow 2{{\tan }^{-1}}x=\dfrac{\pi +3\pi }{6}
2tan1x=4π6\Rightarrow 2{{\tan }^{-1}}x=\dfrac{4\pi }{6}----(3)
Reducing the RHS, we get,
2tan1x=2π3\Rightarrow 2{{\tan }^{-1}}x=\dfrac{2\pi }{3}
tan1x=π3\Rightarrow {{\tan }^{-1}}x=\dfrac{\pi }{3}----(4)
Writing the above expression in terms of xx, we get,
x=tan(π3)\Rightarrow x=\tan \left( \dfrac{\pi }{3} \right)
We know that the value of tan(π3)=3\tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}, putting this value in the above expression, we get,
x=3\Rightarrow x=\sqrt{3}
So, we have the value of x=3x=\sqrt{3}.
We also have to find the value of sec1(2x){{\sec }^{-1}}\left( \dfrac{2}{x} \right),
Substituting the value of x=3x=\sqrt{3}, we get,
sec1(23)\Rightarrow {{\sec }^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)
π3\Rightarrow \dfrac{\pi }{3}
That is, for sec(π3)\sec \left( \dfrac{\pi }{3} \right) we have the value as 23\dfrac{2}{\sqrt{3}}.
Therefore, the value of x=3x=\sqrt{3} and the value of sec1(23)=π3{{\sec }^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)=\dfrac{\pi }{3}.

Note: The given expression had to be converted to either of the one function – either tangent or cotangent function in order to solve the given question. Also, the values of trigonometric functions should be known correctly, else there is a possibility of getting the answer wrong.