Solveeit Logo

Question

Question: If we have an expression as \({\sin ^2}x + 2\cos y + xy = 0\), then \(\dfrac{{dy}}{{dx}} = ?\) \(\...

If we have an expression as sin2x+2cosy+xy=0{\sin ^2}x + 2\cos y + xy = 0, then dydx=?\dfrac{{dy}}{{dx}} = ?
(1)(y+2sinx)(2siny+x)\left( 1 \right)\dfrac{{\left( {y + 2\sin x} \right)}}{{\left( {2\sin y + x} \right)}}
(2)(y+sin2x)(2sinyx)\left( 2 \right)\dfrac{{\left( {y + \sin 2x} \right)}}{{\left( {2\sin y - x} \right)}}
(3)(y+2sinx)(siny+x)\left( 3 \right)\dfrac{{\left( {y + 2\sin x} \right)}}{{\left( {\sin y + x} \right)}}
(4)\left( 4 \right) None of these

Explanation

Solution

In order to solve this question, we will apply the differentiation in the given equation and then, we will substitute the respective differentiation value of each term in the obtained expression. After that, we will simplify the obtained expression by using appropriate mathematical operations.

Complete step-by-step solution:
Since, the given expression is sin2x+2cosy+xy=0{\sin ^2}x + 2\cos y + xy = 0.
Now, we will differentiate the whole expression with respect to xx.
ddx(sin2x+2cosy+xy)=ddx(0)\Rightarrow \dfrac{d}{{dx}}\left( {{{\sin }^2}x + 2\cos y + xy} \right) = \dfrac{d}{{dx}}\left( 0 \right)
Here, we will imply the different sign to each term to proceed further.
ddx(sin2x)+ddx(2cosy)+ddx(xy)=0\Rightarrow \dfrac{d}{{dx}}\left( {{{\sin }^2}x} \right) + \dfrac{d}{{dx}}\left( {2\cos y} \right) + \dfrac{d}{{dx}}\left( {xy} \right) = 0
After that, we will use the rule of differentiation and substitute 2sinxcosx2\sin x\cos x for the differentiation of sin2x{\sin ^2}x, 2sinydydx - 2\sin y\dfrac{{dy}}{{dx}} for the differentiation of 2cosy2\cos y, and y+xdydxy + x\dfrac{{dy}}{{dx}} for the differentiation of xyxy in the above expression. Then, the obtained expression is:
2sinxcosx2sinydydx+y+xdydx=0\Rightarrow 2\sin x\cos x - 2\sin y\dfrac{{dy}}{{dx}} + y + x\dfrac{{dy}}{{dx}} = 0
Now, we will add 2sinydydx2\sin y\dfrac{{dy}}{{dx}} and subtract xdydxx\dfrac{{dy}}{{dx}} in the above step as,
2sinxcosx2sinydydx+y+xdydx+2sinydydxxdydx=0+2sinydydxxdydx\Rightarrow 2\sin x\cos x - 2\sin y\dfrac{{dy}}{{dx}} + y + x\dfrac{{dy}}{{dx}} + 2\sin y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}} = 0 + 2\sin y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}}
Here, we will cancel out the equal like terms to simplify the above expression as:
2sinxcosx+y=2sinydydxxdydx\Rightarrow 2\sin x\cos x + y = 2\sin y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}}
Then, we will use the formula of sin2x\sin 2x and substitute sin2x\sin 2x for 2sinxcosx2\sin x\cos x in the obtained expression.
sin2x+y=2sinydydxxdydx\Rightarrow \sin 2x + y = 2\sin y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}}
Now, we will take the term dydx\dfrac{{dy}}{{dx}} common from the above expression and will proceed further.
sin2x+y=dydx(2sinyx)\Rightarrow \sin 2x + y = \dfrac{{dy}}{{dx}}\left( {2\sin y - x} \right)
After that, we will divide by 2sinyx2\sin y - x each side of the above expression and simplify it.
sin2x+y2sinyx=dydx(2sinyx)2sinyx\Rightarrow \dfrac{{\sin 2x + y}}{{2\sin y - x}} = \dfrac{{\dfrac{{dy}}{{dx}}\left( {2\sin y - x} \right)}}{{2\sin y - x}}
Here, we will cancel out the term 2sinyx2\sin y - x from the left side of the above expression to get the final answer.
sin2x+y2sinyx=dydx\Rightarrow \dfrac{{\sin 2x + y}}{{2\sin y - x}} = \dfrac{{dy}}{{dx}}
Hence, Option B is the right answer.

Note: Here, we will mention some important factors that are used in the solution of the question.
d(sinx)dx=cosx\Rightarrow \dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x
d(cosx)dx=sinx\Rightarrow \dfrac{{d\left( {\cos x} \right)}}{{dx}} = - \sin x
d(uv)dx=dudxv+udvdx\Rightarrow \dfrac{{d\left( {uv} \right)}}{{dx}} = \dfrac{{du}}{{dx}} \cdot v + u \cdot \dfrac{{dv}}{{dx}}