Solveeit Logo

Question

Question: If we have an expression as \({{\log }_{\tan x}}\left( 2+4{{\cos }^{2}}x \right)=2\) then \(x=\) \[\...

If we have an expression as logtanx(2+4cos2x)=2{{\log }_{\tan x}}\left( 2+4{{\cos }^{2}}x \right)=2 then x=x= $$$$
A.n\pi \pm \dfrac{\pi }{6},n\in Z$$$$$ B. 2n\pi \pm \dfrac{\pi }{3},n\in Z C. $n\pi \pm \dfrac{\pi }{4},n\in Z
D. (2n+1)±π2,nZ\left( 2n+1 \right)\pm \dfrac{\pi }{2},n\in Z$$$$

Explanation

Solution

We use the definition of logarithm and convert the equation to 2+4cos2x=tan2x2+4{{\cos }^{2}}x={{\tan }^{2}}x. We convert the tangent and sine into cosines tanθ=sinθcosθ,sin2θ=1cos2θ\tan \theta =\dfrac{\sin \theta }{\cos \theta },{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta . We put cos2x=t{{\cos }^{2}}x=t and solve the quadratic equation for tt. We finally use the theorem that the solutions of cosx=cosα\cos x=\cos \alpha are x=2nπ±αx=2n\pi \pm \alpha where α\alpha is principal value and nn is arbitrary integer.

Complete step-by-step solution
We know that the logarithm is the inverse function of the exponentiation function. That means the logarithm of a given number xx is the exponent to which another fixed number, the base bb must be raised, to produce that number xx, which means if by=x{{b}^{y}}=x then the logarithm denoted as log and calculated as
logbx=y{{\log }_{b}}x=y
We take the converse to have,
logbx=yby=x{{\log }_{b}}x=y\Leftrightarrow {{b}^{y}}=x
We are given in the question an equation involving logarithmic and trigonometric function as follows.
logtanx(2+4cos2x)=2{{\log }_{\tan x}}\left( 2+4{{\cos }^{2}}x \right)=2
We us definition of logarithm to have
2+4cos2x=(tanx)2=tan2x2+4{{\cos }^{2}}x={{\left( \tan x \right)}^{2}}={{\tan }^{2}}x
We use the formula to convert tangent of an angle to sine and cosine tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } in the above step and have,
2+4cos2x=sin2xcos2x\Rightarrow 2+4{{\cos }^{2}}x=\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}
We multiply cos2x{{\cos }^{2}}x on both sides of the equation in the above step to have.
2cos2x+4cos4x=sin2x\Rightarrow 2{{\cos }^{2}}x+4{{\cos }^{4}}x={{\sin }^{2}}x
We use the Pythagorean identity sin2θ=1cos2θ{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta to convert the sine into cosine in the above step to have,

& \Rightarrow 2{{\cos }^{2}}x+4{{\cos }^{4}}x=1-{{\cos }^{2}}x \\\ & \Rightarrow 4{{\cos }^{4}}x+3{{\cos }^{2}}x-1=0 \\\ & \Rightarrow 4{{\left( {{\cos }^{2}}x \right)}^{2}}+3{{\cos }^{2}}x-1=0 \\\ \end{aligned}$$ We put ${{\cos }^{2}}x=t$ in the above equation to have a quadratic equation in $t$, $$\Rightarrow 4{{t}^{2}}+3t-1=0$$ We solve the quadratic equation by splitting the middle term $3t$ to $4t-t$ because $4t\left( -t \right)=-4{{t}^{2}}$. So we have $$\begin{aligned} & \Rightarrow 4{{t}^{2}}+4t-t-1=0 \\\ & \Rightarrow 4t\left( t+1 \right)-\left( t+1 \right)=0 \\\ & \Rightarrow \left( 4t-1 \right)\left( t+1 \right)=0 \\\ & \Rightarrow 4t-1=0,t+1=0 \\\ & \Rightarrow t=\dfrac{1}{4}\text{ or }t=-1 \\\ \end{aligned}$$ The above step gives us the two roots of the quadratic equation $t=\dfrac{1}{4},-1$. We put back $t={{\cos }^{2}}x$ to have, $$\Rightarrow {{\cos }^{2}}x=\dfrac{1}{4}\text{ or }{{\cos }^{2}}x=-1$$ We reject the possibility that ${{\cos }^{2}}x=-1$ because ${{\cos }^{2}}x$ is always a positive quantity and proceed with other equation by factoring using the algebraic identity ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ $$\begin{aligned} & \Rightarrow {{\cos }^{2}}x=\dfrac{1}{4}\text{ } \\\ & \Rightarrow \text{co}{{\text{s}}^{2}}x-{{\left( \dfrac{1}{2} \right)}^{2}}=0 \\\ & \Rightarrow \left( \cos x+\dfrac{1}{2} \right)\left( \cos -\dfrac{1}{2} \right)=0 \\\ & \Rightarrow \cos x=\dfrac{-1}{2}\text{ or }\cos x=\dfrac{1}{2}\text{ } \\\ \end{aligned}$$ We know that the solutions of $\cos x=\cos \alpha $ are $x=2n\pi \pm \alpha $ where $\alpha $ is principal value and $n$ integer. We know that the principal angle for $\dfrac{1}{2},\dfrac{-1}{2}$ are $\dfrac{\pi }{3},\dfrac{2\pi }{3}$ since we have $\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2},\cos \left( \dfrac{2\pi }{3} \right)=\dfrac{-1}{2}$. We use it n the next step, $$\begin{aligned} & \Rightarrow \cos x=\cos \left( \dfrac{2\pi }{3} \right)\text{ or }\cos x=\cos \left( \dfrac{\pi }{3} \right)\text{ } \\\ & \Rightarrow x=2n\pi \pm \dfrac{2\pi }{3}\text{ or }x=2n\pi \pm \dfrac{\pi }{3} \\\ \end{aligned}$$ We find all the solutions taking union of the solutions and have $$\therefore x=n\pi \pm \dfrac{\pi }{3}\text{ },n\in Z$$ **So the correct choice is B.** **Note:** We note that tangent function is not defined for $x=\left( 2n+1 \right)\dfrac{\pi }{2}$ which is the obtained solution satisfies and logarithmic function only takes positive value which $2+4{{\cos }^{2}}x$ satisfies for all obtained values of $x$. We must not confuse between solutions of $\cos x=\cos \alpha $ and $\cos x=0$ whose solutions are $x=\left( 2n+1 \right)\dfrac{\pi }{2}$. If $\cos \alpha =k$ such that $\alpha $ is the first value cosine takes for $k$ before repeating then $\alpha $ is called principal value.