Solveeit Logo

Question

Question: If we have an expression as \(\left| {z - \dfrac{4}{z}} \right| = 2\), then the maximum value of \(\...

If we have an expression as z4z=2\left| {z - \dfrac{4}{z}} \right| = 2, then the maximum value of z\left| z \right| is

  1. 3+1\sqrt 3 + 1
  2. 5+1\sqrt 5 + 1
  3. 22
  4. 2+22 + \sqrt 2
Explanation

Solution

To solve the problem we will first have to use the property of complex numbers that is αβαβ\left| {\left| \alpha \right| - \left| \beta \right|} \right| \leqslant \left| {\alpha - \beta } \right|
Using this property we will obtain an inequality with z\left| z \right|. Then assuming z\left| z \right| as a positive number we can solve the inequality and will obtain two quadratic inequalities. On solving those inequations we will obtain our required result.

Complete step-by-step solution:
We are given, z4z=2\left| {z - \dfrac{4}{z}} \right| = 2.
Now, applying the property of complex numbers, that is, αβαβ\left| {\left| \alpha \right| - \left| \beta \right|} \right| \leqslant \left| {\alpha - \beta } \right|, we get,
z4zz4z\left| {\left| z \right| - \left| {\dfrac{4}{z}} \right|} \right| \leqslant \left| {z - \dfrac{4}{z}} \right|
z4z2\Rightarrow \left| {\left| z \right| - \left| {\dfrac{4}{z}} \right|} \right| \leqslant 2
[Given, z4z=2\left| {z - \dfrac{4}{z}} \right| = 2]
z4z2\Rightarrow \left| {\left| z \right| - \dfrac{4}{{\left| z \right|}}} \right| \leqslant 2
Now, let us assume, z=r>0\left| z \right| = r > 0, since we are taking the mod value, it will be positive.
Therefore, r4r2 \Rightarrow \left| {r - \dfrac{4}{r}} \right| \leqslant 2
Now, splitting the mod function over the inequality, we get,
2r4r2\Rightarrow - 2 \leqslant r - \dfrac{4}{r} \leqslant 2
Now, from the left inequality it gives,
2r4r- 2 \leqslant r - \dfrac{4}{r}
Multiplying rr on both sides of the inequality, we get,
2rr24\Rightarrow - 2r \leqslant {r^2} - 4
Adding 2r2r on both sides of the inequality, we get,
0r2+2r4\Rightarrow 0 \leqslant {r^2} + 2r - 4
Now, changing the side, we get,
r2+2r40\Rightarrow {r^2} + 2r - 4 \geqslant 0
The corresponding roots are,
r2±44(4)2\Rightarrow r \geqslant \dfrac{{ - 2 \pm \sqrt {4 - 4\left( { - 4} \right)} }}{2}
r2±4+162\Rightarrow r \geqslant \dfrac{{ - 2 \pm \sqrt {4 + 16} }}{2}
r2±202\Rightarrow r \geqslant \dfrac{{ - 2 \pm \sqrt {20} }}{2}
r2±252\Rightarrow r \geqslant \dfrac{{ - 2 \pm 2\sqrt 5 }}{2}
Taking, 22 common from numerator and diving by the denominator, we get,
r1±5\Rightarrow r \geqslant - 1 \pm \sqrt 5
Therefore, r15r \geqslant - 1 - \sqrt 5 or r51r \geqslant \sqrt 5 - 1
Since, r>0r > 0.
So, r51(1)r \geqslant \sqrt 5 - 1 - - - \left( 1 \right).
Now, from the right inequality it gives,
r4r2r - \dfrac{4}{r} \leqslant 2
Multiplying rr on both sides of the inequality, we get,
r242r\Rightarrow {r^2} - 4 \leqslant 2r
Subtracting 2r2r on both sides of the inequality, we get,
r22r40\Rightarrow {r^2} - 2r - 4 \leqslant 0
The corresponding roots are,
r2±44(4)2\Rightarrow r \leqslant \dfrac{{2 \pm \sqrt {4 - 4\left( { - 4} \right)} }}{2}
r2±4+162\Rightarrow r \leqslant \dfrac{{2 \pm \sqrt {4 + 16} }}{2}
r2±202\Rightarrow r \leqslant \dfrac{{2 \pm \sqrt {20} }}{2}
r2±252\Rightarrow r \leqslant \dfrac{{2 \pm 2\sqrt 5 }}{2}
Taking, 22 common from numerator and diving by the denominator, we get,
r1±5\Rightarrow r \leqslant 1 \pm \sqrt 5
So, r15r \leqslant 1 - \sqrt 5 or r1+5r \leqslant 1 + \sqrt 5
Since, r>0r > 0.
Therefore, r1+5(2)r \leqslant 1 + \sqrt 5 - - - \left( 2 \right).
Therefore, we can say from (1)\left( 1 \right) and (2)\left( 2 \right),
51r5+1\sqrt 5 - 1 \leqslant r \leqslant \sqrt 5 + 1
51z5+1\Rightarrow \sqrt 5 - 1 \leqslant \left| z \right| \leqslant \sqrt 5 + 1
Therefore, the greatest value of z\left| z \right| is 5+1\sqrt 5 + 1, correct option is 2.

Note: Complex numbers are the most wide field of sets of numbers. It comprises all kinds of number sets like natural numbers, integers, real numbers, rational and irrational numbers. The complex numbers comprises of two parts, imaginary and real parts and are written in the form of a+iba + ib, where aa is the real part and ibib is the imaginary part and ii (called iota) has the value 1\sqrt { - 1} .