Solveeit Logo

Question

Question: If we have an expression as \(\dfrac{{{e^x}}}{{1 - x}} = {B_o} + {B_1}x + {B_2}{x^2} + ...... + {B_{...

If we have an expression as ex1x=Bo+B1x+B2x2+......+Bn1xn1+Bnxn\dfrac{{{e^x}}}{{1 - x}} = {B_o} + {B_1}x + {B_2}{x^2} + ...... + {B_{n - 1}}{x^{n - 1}} + {B_n}{x^n} then BnBn1{B_n} - {B_{n - 1}} equals
(a)1n!\left( a \right)\dfrac{1}{{n!}}
(b)1(n1)!\left( b \right)\dfrac{1}{{\left( {n - 1} \right)!}}
(c)1n!1(n1)!\left( c \right)\dfrac{1}{{n!}} - \dfrac{1}{{\left( {n - 1} \right)!}}
(d)1\left( d \right)1

Explanation

Solution

In this particular question use the concept of expansion and then multiplication, the expansion of ex{e^x} is (1+x1!+x22!+.....+xn1(n1)!+xnn!)\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + ..... + \dfrac{{{x^{n - 1}}}}{{\left( {n - 1} \right)!}} + \dfrac{{{x^n}}}{{n!}}} \right) and the expansion of (1x)1{\left( {1 - x} \right)^{ - 1}} is given as, (1+x+x2+x3+.....+xn1+xn)\left( {1 + x + {x^2} + {x^3} + ..... + {x^{n - 1}} + {x^n}} \right) so use these concepts to reach the solution of the question.

Complete step-by-step solution:
Given equation:
ex1x=Bo+B1x+B2x2+......+Bn1xn1+Bnxn\dfrac{{{e^x}}}{{1 - x}} = {B_o} + {B_1}x + {B_2}{x^2} + ...... + {B_{n - 1}}{x^{n - 1}} + {B_n}{x^n}
Now we have to find out the value of BnBn1{B_n} - {B_{n - 1}}
Now consider the LHS of the given equation we have,
ex1x\Rightarrow \dfrac{{{e^x}}}{{1 - x}}
Now the above equation is written as
ex(1x)1\Rightarrow {e^x}{\left( {1 - x} \right)^{ - 1}}
Now as we know that the expansion of ex{e^x} is (1+x1!+x22!+.....+xn1(n1)!+xnn!)\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + ..... + \dfrac{{{x^{n - 1}}}}{{\left( {n - 1} \right)!}} + \dfrac{{{x^n}}}{{n!}}} \right) and the expansion of (1x)1{\left( {1 - x} \right)^{ - 1}} is given as, (1+x+x2+x3+.....+xn1+xn)\left( {1 + x + {x^2} + {x^3} + ..... + {x^{n - 1}} + {x^n}} \right) so we have,
ex(1x)1=(1+x1!+x22!+.....+xn1(n1)!+xnn!)(1+x+x2+x3+.....+xn1+xn)\Rightarrow {e^x}{\left( {1 - x} \right)^{ - 1}} = \left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + ..... + \dfrac{{{x^{n - 1}}}}{{\left( {n - 1} \right)!}} + \dfrac{{{x^n}}}{{n!}}} \right)\left( {1 + x + {x^2} + {x^3} + ..... + {x^{n - 1}} + {x^n}} \right)

ex(1x)1=1+(1+11!)x+(1+11!+12!)x2+(1+11!+12!+13!)x3+....+(1+11!+12!+...+1(n1)!)xn1 \+(1+11!+12!+...+1(n1)!+1n!)xn  \Rightarrow {e^x}{\left( {1 - x} \right)^{ - 1}} = 1 + \left( {1 + \dfrac{1}{{1!}}} \right)x + \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}}} \right){x^2} + \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + \dfrac{1}{{3!}}} \right){x^3} + .... + \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}}} \right){x^{n - 1}} \\\ \+ \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{1}{{n!}}} \right){x^n} \\\

Now compare the coefficients of the RHS of the above equation with the RHS of the given equation we have,
ex1x=Bo+B1x+B2x2+......+Bn1xn1+Bnxn\dfrac{{{e^x}}}{{1 - x}} = {B_o} + {B_1}x + {B_2}{x^2} + ...... + {B_{n - 1}}{x^{n - 1}} + {B_n}{x^n}
Bo=1,B1=(1+11!),......,Bn1=(1+11!+12!+...+1(n1)!),Bn=(1+11!+12!+...+1(n1)!+1n!)\Rightarrow {B_o} = 1,{B_1} = \left( {1 + \dfrac{1}{{1!}}} \right),......,{B_{n - 1}} = \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}}} \right),{B_n} = \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{1}{{n!}}} \right)
Now we have to find out the value of BnBn1{B_n} - {B_{n - 1}}.
BnBn1=(1+11!+12!+...+1(n1)!+1n!)(1+11!+12!+...+1(n1)!)\Rightarrow {B_n} - {B_{n - 1}} = \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{1}{{n!}}} \right) - \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + ... + \dfrac{1}{{\left( {n - 1} \right)!}}} \right)
So as we see that all the terms are cancel out except one term so we have,
BnBn1=1n!\Rightarrow {B_n} - {B_{n - 1}} = \dfrac{1}{{n!}}
So this is the required answer.
Hence option (a) is the correct answer.

Note: Whenever we face such types of questions the key concept we have to remember is that always recall the expansion of standard terms such as ex and (1x)1{e^x}{\text{ and }}{\left( {1 - x} \right)^{ - 1}} which is all written above then multiply them as above and write the coefficients of Bo,B1,B2......Bn1,Bn{B_o},{B_1},{B_2}......{B_{n - 1}},{B_n} as above then find out the value of (BnBn1)\left( {{B_n} - {B_{n - 1}}} \right) as above, we will get the required answer.