Solveeit Logo

Question

Question: If we have an expression as \({{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2}=\alpha \), where \(-1\le x\...

If we have an expression as cos1xcos1y2=α{{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2}=\alpha , where 1x1,2y2,xy2-1\le x\le 1,-2\le y\le 2,x\le \dfrac{y}{2} the 4x24xycosα+y24{{x}^{2}}-4xy\cos \alpha +{{y}^{2}} is equal to
[a] 4sin2α+2x2y24{{\sin }^{2}}\alpha +2{{x}^{2}}{{y}^{2}}
[b] 4sin2α2x2y24{{\sin }^{2}}\alpha -2{{x}^{2}}{{y}^{2}}
[c] 4sin2α4{{\sin }^{2}}\alpha
[d] None of these

Explanation

Solution

Take cos on both sides of the equation cos1xcos1y2=α{{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2}=\alpha and use the fact that cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B. Simplify and hence find the value of the expression 4x24xycosα+y24{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}.

Complete step-by-step solution:
We have cos1xcos1y2=α{{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2}=\alpha
Taking cos on both sides, we get
cos(cos1xcos1y2)=cosα\cos \left( {{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2} \right)=\cos \alpha
We know that cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B
Hence, we have
cos(cos1x)cos(cos1y2)+sin(cos1x)sin(cos1y2)=cosα\cos \left( {{\cos }^{-1}}x \right)\cos \left( {{\cos }^{-1}}\dfrac{y}{2} \right)+\sin \left( {{\cos }^{-1}}x \right)\sin \left( {{\cos }^{-1}}\dfrac{y}{2} \right)=\cos \alpha
We know that cos(cos1x)=xx[1,1]\cos \left( {{\cos }^{-1}}x \right)=x\forall x\in \left[ -1,1 \right] and sin(cos1x)=1x2x[1,1]\sin \left( {{\cos }^{-1}}x \right)=\sqrt{1-{{x}^{2}}}\forall x\in \left[ -1,1 \right]
Hence, we have
xy2+1x2×1y24=cosαx\dfrac{y}{2}+\sqrt{1-{{x}^{2}}}\times \sqrt{1-\dfrac{{{y}^{2}}}{4}}=\cos \alpha
Subtracting xy2\dfrac{xy}{2} on both sides, we get
1x24y22=cosαxy2\sqrt{1-{{x}^{2}}}\dfrac{\sqrt{4-{{y}^{2}}}}{2}=\cos \alpha -\dfrac{xy}{2}
Multiplying by 2 on both sides, we get
1x24y2=2cosαxy\sqrt{1-{{x}^{2}}}\sqrt{4-{{y}^{2}}}=2\cos \alpha -xy
Squaring both sides, we get
(1x2)(4y2)=(2cosαxy)2\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)={{\left( 2\cos \alpha -xy \right)}^{2}}
We know that (ab)2=a22ab+b2{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}
Hence, we have
(1x2)(4y2)=4cos2α+x2y24xycosα\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)=4{{\cos }^{2}}\alpha +{{x}^{2}}{{y}^{2}}-4xy\cos \alpha
Expanding the term on LHS, we get
4y24x2+x2y2=4cos2α4xycosα+x2y24-{{y}^{2}}-4{{x}^{2}}+{{x}^{2}}{{y}^{2}}=4{{\cos }^{2}}\alpha -4xy\cos \alpha +{{x}^{2}}{{y}^{2}}
Subtracting x2y2{{x}^{2}}{{y}^{2}} from both sides, we get
4y24x2=4cos2α4xycosα4-{{y}^{2}}-4{{x}^{2}}=4{{\cos }^{2}}\alpha -4xy\cos \alpha
Adding 4x2+y24{{x}^{2}}+{{y}^{2}} on both sides, we get
4=4x2+y24xycosα+4cos2α4=4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha
Subtracting 4cos2α4{{\cos }^{2}}\alpha on both sides, we get
4x24xycosα+y2=44cos2α=4(1cos2α)4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}=4-4{{\cos }^{2}}\alpha =4\left( 1-{{\cos }^{2}}\alpha \right)
We know that 1cos2α=sin2α1-{{\cos }^{2}}\alpha ={{\sin }^{2}}\alpha
Hence, we have
4x24xycosα+y2=4sin2α4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}=4{{\sin }^{2}}\alpha
Hence option [c] is correct.

Note: Alternative solution:
We know that cos1xcos1y=cos1(xy1x21y2)+2kπ,kN{{\cos }^{-1}}x-{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy-\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \right)+2k\pi ,k\in \mathbb{N}, where k is suitably chosen.
Hence, we have
cos1xcos1y2=cos1(xy21x21y24)+2kπ,kN α=cos1(xy21x21y24)+2kπ,kN \begin{aligned} & {{\cos }^{-1}}x-{{\cos }^{-1}}\dfrac{y}{2}={{\cos }^{-1}}\left( \dfrac{xy}{2}-\sqrt{1-{{x}^{2}}}\sqrt{1-\dfrac{{{y}^{2}}}{4}} \right)+2k\pi ,k\in \mathbb{N} \\\ & \Rightarrow \alpha ={{\cos }^{-1}}\left( \dfrac{xy}{2}-\sqrt{1-{{x}^{2}}}\sqrt{1-\dfrac{{{y}^{2}}}{4}} \right)+2k\pi ,k\in \mathbb{N} \\\ \end{aligned}
Taking cos on both sides, we get
cosα=(xy21x21y24)\cos \alpha =\left( \dfrac{xy}{2}-\sqrt{1-{{x}^{2}}}\sqrt{1-\dfrac{{{y}^{2}}}{4}} \right), which is the same as obtained above. Hence proceeding as above, we get option [c] is correct.