Solveeit Logo

Question

Question: If we have an expression \(5\tan \theta = 4\), then \(\dfrac{{5\sin \theta - 3\cos \theta }}{{5\sin ...

If we have an expression 5tanθ=45\tan \theta = 4, then 5sinθ3cosθ5sinθ+2cosθ=\dfrac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 2\cos \theta }} =
A)0A)0
B)1B)1
C)16C)\dfrac{1}{6}
D)6D)6

Explanation

Solution

First, we need to analyze the given information which is in the trigonometric form.
The trigonometric functions are useful whenever trigonometric functions are involved in an expression or an equation and these identities are useful whenever expressions involving trigonometric functions need to be simplified.
We can simply find the value of the tangent first, and then convert the required equation to tangent then substitute the values to get the results required.
Formula used:
sinθcosθ=tanθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta

Complete step-by-step solution:
Since from the given that we have, 5tanθ=45\tan \theta = 4
Just divide both the side using the number 55 then we get 55tanθ=45\dfrac{5}{5}\tan \theta = \dfrac{4}{5}
Now by the division operation, 55=1\dfrac{5}{5} = 1 then we get tanθ=45\tan \theta = \dfrac{4}{5} which is the value of the tangent.
Now we need to find the value of 5sinθ3cosθ5sinθ+2cosθ\dfrac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 2\cos \theta }}
Take the numerator value 5sinθ3cosθ5\sin \theta - 3\cos \theta and divide with the trigonometric function cosine, then we get 5sinθcosθ3cosθcosθ\dfrac{{5\sin \theta }}{{\cos \theta }} - \dfrac{{3\cos \theta }}{{\cos \theta }} again by the make use of the division operation that same values in both numerator and denominator will get cancel thus we get 5sinθcosθ3cosθcosθ5sinθcosθ3\dfrac{{5\sin \theta }}{{\cos \theta }} - \dfrac{{3\cos \theta }}{{\cos \theta }} \Rightarrow \dfrac{{5\sin \theta }}{{\cos \theta }} - 3
Since by the trigonometric formulas we have, sinθcosθ=tanθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta and substituting these values we get 5sinθcosθ35tanθ3\dfrac{{5\sin \theta }}{{\cos \theta }} - 3 \Rightarrow 5\tan \theta - 3 which is the simplified numerator value.
Similarly, tale the denominator value 5sinθ+2cosθ5\sin \theta + 2\cos \theta and divide with the trigonometric function cosine, then we get 5sinθcosθ+2cosθcosθ\dfrac{{5\sin \theta }}{{\cos \theta }} + \dfrac{{2\cos \theta }}{{\cos \theta }} again by the make use of the division operation that same values in both numerator and denominator will get cancel thus we get 5sinθcosθ+2cosθcosθ5sinθcosθ+2\dfrac{{5\sin \theta }}{{\cos \theta }} + \dfrac{{2\cos \theta }}{{\cos \theta }} \Rightarrow \dfrac{{5\sin \theta }}{{\cos \theta }} + 2
Since by the trigonometric formulas we have, sinθcosθ=tanθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta and substituting these values we get 5sinθcosθ+25tanθ+2\dfrac{{5\sin \theta }}{{\cos \theta }} + 2 \Rightarrow 5\tan \theta + 2 which is the simplified numerator value.
Therefore, we have 5sinθ3cosθ5sinθ+2cosθ=5tanθ35tanθ+2\dfrac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 2\cos \theta }} = \dfrac{{5\tan \theta - 3}}{{5\tan \theta + 2}}
Since from the given, we have the value of tangent as tanθ=45\tan \theta = \dfrac{4}{5} and substituting this value we get 5tanθ35tanθ+2=5(45)35(45)+2\dfrac{{5\tan \theta - 3}}{{5\tan \theta + 2}} = \dfrac{{5(\dfrac{4}{5}) - 3}}{{5(\dfrac{4}{5}) + 2}} and canceling the common terms we get 5tanθ35tanθ+2=5(45)35(45)+2434+2=16\dfrac{{5\tan \theta - 3}}{{5\tan \theta + 2}} = \dfrac{{5(\dfrac{4}{5}) - 3}}{{5(\dfrac{4}{5}) + 2}} \Rightarrow \dfrac{{4 - 3}}{{4 + 2}} = \dfrac{1}{6}
Thus, we get 5sinθ3cosθ5sinθ+2cosθ=16\dfrac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 2\cos \theta }} = \dfrac{1}{6}
Therefore, the option C)16C)\dfrac{1}{6} is correct.

Note: In total there are six trigonometric values which are sine, cos, tan, sec, cosec, cot while all the values have been relation like sincos=tan\dfrac{{\sin }}{{\cos }} = \tan and tan=1cot\tan = \dfrac{1}{{\cot }}
Also, the inverse functions of the trigonometric can be represented as tanθ=45θ=tan145\tan \theta = \dfrac{4}{5} \Rightarrow \theta = {\tan ^{ - 1}}\dfrac{4}{5}
The other trigonometric functions as 1sin=cosec,1cos=sec\dfrac{1}{{\sin }} = \cos ec,\dfrac{1}{{\cos }} = \sec