Solveeit Logo

Question

Question: If we have an equation as \({{x}^{2}}+{{y}^{2}}=1\), then find the differential equation. (a) \(y{...

If we have an equation as x2+y2=1{{x}^{2}}+{{y}^{2}}=1, then find the differential equation.
(a) yy+(y)2+1=0y{y}''+{{\left( {{y}'} \right)}^{2}}+1=0
(b) yy+2(y)2+1=0y{y}''+2{{\left( {{y}'} \right)}^{2}}+1=0
(c) yy2(y)2+1=0y{y}''-2{{\left( {{y}'} \right)}^{2}}+1=0
(d) yy+(y)21=0y{y}''+{{\left( {{y}'} \right)}^{2}}-1=0
(e) yy2(y)21=0y{y}''-2{{\left( {{y}'} \right)}^{2}}-1=0

Explanation

Solution

Hint: For solving this question, we will use some standard results of differentiation as d(xn)dx=nxn1\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} , d(yn)dx=nyn1dydx\dfrac{d\left( {{y}^{n}} \right)}{dx}=n{{y}^{n-1}}\dfrac{dy}{dx} and apply the product rule of differentiation to differentiate the given equation with respect to xx. And we will differentiate the given equation two times and solve further to get the correct answer.

Complete step-by-step solution -
Given:
It is given that, x2+y2=1{{x}^{2}}+{{y}^{2}}=1 and we have to generate a differential equation between yy , y{y}' and y{y}'' .
Now, before we proceed we should know the following formulas and concepts of differential calculus:
1. If y=f(x)g(x)y=f\left( x \right)\cdot g\left( x \right) , then dydx=d(f(x)g(x))dx=f(x)g(x)+f(x)g(x)\dfrac{dy}{dx}=\dfrac{d\left( f\left( x \right)\cdot g\left( x \right) \right)}{dx}={f}'\left( x \right)\cdot g\left( x \right)+f\left( x \right)\cdot {g}'\left( x \right) . This is also known as the product rule of differentiation.
2. If y=f(x)y=f\left( x \right) , then y=dydx=d(f(x))dx{y}'=\dfrac{dy}{dx}=\dfrac{d\left( f\left( x \right) \right)}{dx} & y=d(y)dx{y}''=\dfrac{d\left( {{y}'} \right)}{dx} .
3. d(xn)dx=nxn1\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} and d(yn)dx=nyn1dydx\dfrac{d\left( {{y}^{n}} \right)}{dx}=n{{y}^{n-1}}\dfrac{dy}{dx}
Now, we will use the above-mentioned formulas and concepts to differentiate x2+y2=1{{x}^{2}}+{{y}^{2}}=1 with respect to xx . Then,
x2+y2=1 d(x2+y2)dx=d(1)dx d(x2)dx+d(y2)dx=d(1)dx \begin{aligned} & {{x}^{2}}+{{y}^{2}}=1 \\\ & \Rightarrow \dfrac{d\left( {{x}^{2}}+{{y}^{2}} \right)}{dx}=\dfrac{d\left( 1 \right)}{dx} \\\ & \Rightarrow \dfrac{d\left( {{x}^{2}} \right)}{dx}+\dfrac{d\left( {{y}^{2}} \right)}{dx}=\dfrac{d\left( 1 \right)}{dx} \\\ \end{aligned}
Now, as 11 is a constant term so, we can write d(1)dx=0\dfrac{d\left( 1 \right)}{dx}=0 , and we will use the formula d(xn)dx=nxn1\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} to write d(x2)dx=2x\dfrac{d\left( {{x}^{2}} \right)}{dx}=2x , d(yn)dx=nyn1dydx\dfrac{d\left( {{y}^{n}} \right)}{dx}=n{{y}^{n-1}}\dfrac{dy}{dx} to write d(y2)dx=2ydydx\dfrac{d\left( {{y}^{2}} \right)}{dx}=2y\dfrac{dy}{dx} in the above equation. Then,
d(x2)dx+d(y2)dx=d(1)dx 2x+2ydydx=0 x+ydydx=0 \begin{aligned} & \dfrac{d\left( {{x}^{2}} \right)}{dx}+\dfrac{d\left( {{y}^{2}} \right)}{dx}=\dfrac{d\left( 1 \right)}{dx} \\\ & \Rightarrow 2x+2y\dfrac{dy}{dx}=0 \\\ & \Rightarrow x+y\dfrac{dy}{dx}=0 \\\ \end{aligned}
Now, we will write dydx=y\dfrac{dy}{dx}={y}' in the above equation. Then,
x+ydydx=0 x+yy=0 \begin{aligned} & x+y\dfrac{dy}{dx}=0 \\\ & \Rightarrow x+y{y}'=0 \\\ \end{aligned}
Now, we will differentiate the above equation with respect to xx again. Then,
x+yy=0 d(x+yy)dx=0 dxdx+d(yy)dx=0 \begin{aligned} & x+y{y}'=0 \\\ & \Rightarrow \dfrac{d\left( x+y{y}' \right)}{dx}=0 \\\ & \Rightarrow \dfrac{dx}{dx}+\dfrac{d\left( y{y}' \right)}{dx}=0 \\\ \end{aligned}
Now, we will use the formula d(xn)dx=nxn1\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} to write dxdx=1\dfrac{dx}{dx}=1 and apply the product rule of differentiation to write d(yy)dx=ydydx+yd(y)dx\dfrac{d\left( y{y}' \right)}{dx}={y}'\dfrac{dy}{dx}+y\dfrac{d\left( {{y}'} \right)}{dx} in the above equation. Then,
dxdx+d(yy)dx=0 1+ydydx+yd(y)dx=0 \begin{aligned} & \dfrac{dx}{dx}+\dfrac{d\left( y{y}' \right)}{dx}=0 \\\ & \Rightarrow 1+{y}'\dfrac{dy}{dx}+y\dfrac{d\left( {{y}'} \right)}{dx}=0 \\\ \end{aligned}
Now, we will dydx=y\dfrac{dy}{dx}={y}' and d(y)dx=y\dfrac{d\left( {{y}'} \right)}{dx}={y}'' in the above equation. Then,
1+ydydx+yd(y)dx=0 1+y×y+yy=0 yy+(y)2+1=0 \begin{aligned} & 1+{y}'\dfrac{dy}{dx}+y\dfrac{d\left( {{y}'} \right)}{dx}=0 \\\ & \Rightarrow 1+{y}'\times {y}'+y{y}''=0 \\\ & \Rightarrow y{y}''+{{\left( {{y}'} \right)}^{2}}+1=0 \\\ \end{aligned}
Now, from the above result, we conclude that, yy+(y)2+1=0y{y}''+{{\left( {{y}'} \right)}^{2}}+1=0 .
Thus, if x2+y2=1{{x}^{2}}+{{y}^{2}}=1 , then yy+(y)2+1=0y{y}''+{{\left( {{y}'} \right)}^{2}}+1=0 .
Hence, (a) will be the correct option.

Note: Here, the student should know how to apply the product rule of differentiation to find the differentiation of functions of the form y=f(x)g(x)y=f\left( x \right)\cdot g\left( x \right) . After that, while starting the solution we should be aware of the options and as in all the options term y{y}'' is present so, we should differentiate the given equation at least twice. Moreover, though the question is very easy, we should avoid making calculation mistakes while solving and after getting the final answer we should match it correctly and select the correct option.