Solveeit Logo

Question

Question: If we have \(\alpha ,\beta ,\gamma ,\delta \) are the roots of equation \[{{x}^{4}}+a{{x}^{3}}+b{{x}...

If we have α,β,γ,δ\alpha ,\beta ,\gamma ,\delta are the roots of equation x4+ax3+bx2+cx+d+e=0{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0, find the value of α2β\sum{{{\alpha }^{2}}\beta }.

Explanation

Solution

Here we are given an equation of degree four, thus having our roots. We will find the sum and product of roots in terms of coefficients of the equation to find desired results. For equation of degree four, x4+ax3+bx2+cx+d+e=0{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0, sum of roots is given as –
α+β+γ+δ=ba\alpha +\beta +\gamma +\delta =-\dfrac{b}{a} .
Product of roots is given as –
αβγδ=ea\alpha \beta \gamma \delta =\dfrac{e}{a}.
Also, αβ+βγ+γδ+αγ+αδ+βδ=ca\alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =\dfrac{c}{a} and
αβγ+αγδ+αβδ+γβδ=da\alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-\dfrac{d}{a}.
We will use these formulas for finding α2β\sum{{{\alpha }^{2}}\beta }.

Complete step-by-step solution
Before applying direct formulas and jumping to answer, let us first understand the basic formulas for nth{{n}^{th}} polynomial.
For a polynomial of degree nn, let roots of equation are α,α1,α2,...,αn\alpha ,{{\alpha }_{1}},{{\alpha }_{2}},...,{{\alpha }_{n}}.
Equation in general form is given by –
f(x)=a0xn+a1xn1+a2xn2+...+an1x+an=0f\left( x \right)={{a}_{0}}{{x}^{n}}+{{a}_{1}}{{x}^{n-1}}+{{a}_{2}}{{x}^{n-2}}+...+{{a}_{n-1}}x+{{a}_{n}}=0
Then,
Sum of roots, α+α1+α2+...+αn=coefficient  of  xn1coefficient  of  xn\alpha +{{\alpha }_{1}}+{{\alpha }_{2}}+...+{{\alpha }_{n}}=\dfrac{-coefficient~~of~~{{x}^{n-1}}}{coefficient~~of~~{{x}^{n}}}
Also, α1α2+α1α3...=(1)2coefficient  of  xn2coefficient  of  xn{{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{1}}{{\alpha }_{3}}...={{\left( -1 \right)}^{2}}\dfrac{coefficient~~of~~{{x}^{n-2}}}{coefficient~~of~~{{x}^{n}}}
Similarly, other formulas are:-
α1α2α3+α2α3α4...=(1)3coefficient  of  xn3coefficient  of  xn{{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{3}}+{{\alpha }_{2}}{{\alpha }_{3}}{{\alpha }_{4}}...={{\left( -1 \right)}^{3}}\dfrac{coefficient~~of~~{{x}^{n-3}}}{coefficient~~of~~{{x}^{n}}}
α1α2α3α4...αn=(1)nconstant  termcoefficient  of  xn{{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{3}}{{\alpha }_{4}}...{{\alpha }_{n}}={{\left( -1 \right)}^{n}}\dfrac{constant~~term}{coefficient~~of~~{{x}^{n}}}
Comparing general formulas by the general equation of degree four, x4+ax3+bx2+cx+d+e=0{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0 having roots α,β,γ,δ\alpha ,\beta ,\gamma ,\delta as roots:

& \alpha +\beta +\gamma +\delta =-\dfrac{b}{a} \\\ & \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =\dfrac{c}{a} \\\ & \alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-\dfrac{d}{a} \\\ & \alpha \beta \gamma \delta =\dfrac{e}{a} \\\ \end{aligned}$$ We are given the equation, $${{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0$$. Comparing with above formulas we get – $$\begin{aligned} & \alpha +\beta +\gamma +\delta =-a~~~~~~~~~~~~~~~~~~~~~~~~~~~~...\left( 1 \right) \\\ & \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =b~~~~~...\left( 2 \right) \\\ & \alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-c~~~~~~~~~~~~...\left( 3 \right) \\\ & \alpha \beta \gamma \delta =e \\\ \end{aligned}$$ On multiplying $\left( 1 \right)$ and $\left( 2 \right)$, we get – $$\begin{aligned} & \left( \alpha +\beta +\gamma +\delta \right)\left( \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta \right)=-ab \\\ & \Rightarrow {{\alpha }^{2}}\beta +\alpha {{\beta }^{2}}+\alpha \beta \gamma +\alpha \beta \delta +\alpha \beta \gamma +{{\beta }^{2}}\gamma +\beta {{\gamma }^{2}}+\beta \gamma \delta +\alpha \gamma \delta +\beta \gamma \delta +{{\gamma }^{2}}\delta +\gamma {{\delta }^{2}}+ \\\ & {{\alpha }^{2}}\gamma +\alpha \beta \gamma +\alpha {{\gamma }^{2}}+\alpha \gamma \delta +{{\alpha }^{2}}\delta +\alpha \beta \delta +\alpha \gamma \delta +\alpha {{\delta }^{2}}+\alpha \beta \delta +{{\beta }^{2}}\delta +\gamma \beta \delta +\beta {{\delta }^{2}}=-ab \\\ \end{aligned}$$ Rearranging the terms, we get – $$\begin{aligned} & {{\alpha }^{2}}\beta +\alpha {{\beta }^{2}}+{{\beta }^{2}}\gamma +\beta {{\gamma }^{2}}+{{\gamma }^{2}}\delta +\gamma {{\delta }^{2}}+{{\alpha }^{2}}\gamma +\alpha {{\gamma }^{2}}+{{\alpha }^{2}}\delta +\alpha {{\delta }^{2}}+{{\beta }^{2}}\delta +\beta {{\delta }^{2}}+ \\\ & 3\left( \alpha \beta \gamma +\beta \gamma \delta +\alpha \beta \delta +\beta \gamma \delta \right)=-ab \\\ \end{aligned}$$ We can write the first twelve terms by $\sum{{{\alpha }^{2}}\beta }$. Hence we get – $\sum{{{\alpha }^{2}}\beta }+3\left( \alpha \beta \gamma +\beta \gamma \delta +\alpha \beta \delta +\beta \gamma \delta \right)=-ab$ From equation (3), we can clearly see that we can directly put the value of $-c$ in above equation. We get – $$\begin{aligned} & \sum{{{\alpha }^{2}}\beta }-3c=-ab \\\ & \Rightarrow \sum{{{\alpha }^{2}}\beta }=3c-ab \\\ \end{aligned}$$ **Hence, we have found our required answer, which is, $$\sum{{{\alpha }^{2}}\beta }=3c-ab$$.** **Note:** Students should take care of signs the most. Mistakes can be made while taking positive or negative coefficients. Easy way to remember the product of roots is that we take the positive value of the coefficient of the constant term in even polynomials and the negative value of the coefficient of the constant term in odd polynomials. As there are a lot of terms in the equation, students should do it carefully and do not skip any term. Always remember, we can check it by looking at the symmetry of terms.