Solveeit Logo

Question

Question: If we have a variable as \(x=\tan \dfrac{\pi }{18}\) then find the value of \(3{{x}^{6}}-27{{x}^{4}}...

If we have a variable as x=tanπ18x=\tan \dfrac{\pi }{18} then find the value of 3x627x4+33x23{{x}^{6}}-27{{x}^{4}}+33{{x}^{2}}.
A. 1
B. 2
C. 333\sqrt{3}
D. 13\dfrac{1}{3}

Explanation

Solution

We first use the multiple angle formula of trigonometry for tan(3α)=3tanαtan3α13tan2α\tan \left( 3\alpha \right)=\dfrac{3\tan \alpha -{{\tan }^{3}}\alpha }{1-3{{\tan }^{2}}\alpha }. We put the value of α=π18\alpha =\dfrac{\pi }{18} in the equation to find an equation of x=tanπ18x=\tan \dfrac{\pi }{18}. We solve the equation and then take the square of that. We expand the square form to find the value of the problem 3x627x4+33x23{{x}^{6}}-27{{x}^{4}}+33{{x}^{2}}.

Complete step-by-step solution:
We have the trigonometric multiple angle formula of tan(3α)=3tanαtan3α13tan2α\tan \left( 3\alpha \right)=\dfrac{3\tan \alpha -{{\tan }^{3}}\alpha }{1-3{{\tan }^{2}}\alpha }.
We put the value α=π18\alpha =\dfrac{\pi }{18} in the equation. Also, we use the given identity x=tanπ18x=\tan \dfrac{\pi }{18}. We also have the identity value of 13=tanπ6\dfrac{1}{\sqrt{3}}=\tan \dfrac{\pi }{6}.
tan(3π18)=3tan(π18)tan3(π18)13tan2(π18) 13=3xx313x2 \begin{aligned} & \tan \left( \dfrac{3\pi }{18} \right)=\dfrac{3\tan \left( \dfrac{\pi }{18} \right)-{{\tan }^{3}}\left( \dfrac{\pi }{18} \right)}{1-3{{\tan }^{2}}\left( \dfrac{\pi }{18} \right)} \\\ & \Rightarrow \dfrac{1}{\sqrt{3}}=\dfrac{3x-{{x}^{3}}}{1-3{{x}^{2}}} \\\ \end{aligned}
We now solve the equation and get 3x21=3x(x23)3{{x}^{2}}-1=\sqrt{3}x\left( {{x}^{2}}-3 \right).
Now we take square both sides of the equation and get (3x21)2=3x2(x23)2{{\left( 3{{x}^{2}}-1 \right)}^{2}}=3{{x}^{2}}{{\left( {{x}^{2}}-3 \right)}^{2}}.
We break the squares using the formula of (ab)2=a22ab+b2{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}.
(3x21)2=3x2(x23)2 9x4+16x2=3x2(x4+96x2) \begin{aligned} & {{\left( 3{{x}^{2}}-1 \right)}^{2}}=3{{x}^{2}}{{\left( {{x}^{2}}-3 \right)}^{2}} \\\ & \Rightarrow 9{{x}^{4}}+1-6{{x}^{2}}=3{{x}^{2}}\left( {{x}^{4}}+9-6{{x}^{2}} \right) \\\ \end{aligned}
Now we solve the rest of the equation and get
9x4+16x2=3x2(x4+96x2) 9x4+18x4+16x227x23x6=0 3x627x4+33x2=1 \begin{aligned} & 9{{x}^{4}}+1-6{{x}^{2}}=3{{x}^{2}}\left( {{x}^{4}}+9-6{{x}^{2}} \right) \\\ & \Rightarrow 9{{x}^{4}}+18{{x}^{4}}+1-6{{x}^{2}}-27{{x}^{2}}-3{{x}^{6}}=0 \\\ & \Rightarrow 3{{x}^{6}}-27{{x}^{4}}+33{{x}^{2}}=1 \\\ \end{aligned}
Therefore, the value of 3x627x4+33x23{{x}^{6}}-27{{x}^{4}}+33{{x}^{2}} is 1. The correct option is A.

Note: Another way of solving would have been to try and find the solution going from a=tanπ9a=\tan \dfrac{\pi }{9} and using the formula of tan(2α)\tan \left( 2\alpha \right). The process would have been more difficult as we need to use tanπ3\tan \dfrac{\pi }{3} and tanπ6\tan \dfrac{\pi }{6} to find the value of a=tanπ9a=\tan \dfrac{\pi }{9}.