Solveeit Logo

Question

Question: If we have a trigonometric identity as \(\cos x+{{\cos }^{2}}x=1\) , the find the value of \({{\sin ...

If we have a trigonometric identity as cosx+cos2x=1\cos x+{{\cos }^{2}}x=1 , the find the value of sin4x+sin6x{{\sin }^{4}}x+{{\sin }^{6}}x is
A. 1+5-1+\sqrt{5}
B. 152\dfrac{-1-\sqrt{5}}{2}
C. 152\dfrac{1-\sqrt{5}}{2}
D. 1+52\dfrac{-1+\sqrt{5}}{2}
E. 151-\sqrt{5}

Explanation

Solution

To find sin4x+sin6x{{\sin }^{4}}x+{{\sin }^{6}}x , let us write cosx+cos2x=1\cos x+{{\cos }^{2}}x=1 in the form of a quadratic equation. That is, cos2x+cosx1=0{{\cos }^{2}}x+\cos x-1=0 . Let us find the roots using the formula x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} . Here, x=cosxx=\cos x . Hence, cosx=1±1(4×1×1)2×1\cos x=\dfrac{-1\pm \sqrt{1-\left( 4\times 1\times -1 \right)}}{2\times 1} . On solving this, we will get cosx=1+52,152\cos x=\dfrac{-1+\sqrt{5}}{2},\dfrac{-1-\sqrt{5}}{2} . We can see that 152\dfrac{-1-\sqrt{5}}{2} is not within the range of cosx\cos x , that is, [-1,1]. Hence, this value is neglected. We will solve cosx+cos2x=1\cos x+{{\cos }^{2}}x=1 by writing this in the form cosx=1cos2x\cos x=1-{{\cos }^{2}}x . On solving this, we will get cosx=sin2x\cos x={{\sin }^{2}}x . Now, we will write sin4x+sin6x{{\sin }^{4}}x+{{\sin }^{6}}x as (sin2x)2+(sin2x)3{{\left( {{\sin }^{2}}x \right)}^{2}}+{{\left( {{\sin }^{2}}x \right)}^{3}} . By substituting the above values in this, we will get the required answer.

Complete step-by-step solution:
We have to find sin4x+sin6x{{\sin }^{4}}x+{{\sin }^{6}}x . It is given that cosx+cos2x=1\cos x+{{\cos }^{2}}x=1 .
Let us take 1 to the LHS. We will get
cosx+cos2x1=0\cos x+{{\cos }^{2}}x-1=0
Let us rearrange this in the form of a quadratic equation.
cos2x+cosx1=0\Rightarrow {{\cos }^{2}}x+\cos x-1=0
We know that for a quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 , x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}
Here, x=cosxx=\cos x . Hence,
cosx=1±1(4×1×1)2×1\cos x=\dfrac{-1\pm \sqrt{1-\left( 4\times 1\times -1 \right)}}{2\times 1}
Let us simplify the terms inside the root. We will get
cosx=1±1+42 cosx=1±52 cosx=1+52,152 \begin{aligned} & \cos x=\dfrac{-1\pm \sqrt{1+4}}{2} \\\ & \Rightarrow \cos x=\dfrac{-1\pm \sqrt{5}}{2} \\\ & \Rightarrow \cos x=\dfrac{-1+\sqrt{5}}{2},\dfrac{-1-\sqrt{5}}{2} \\\ \end{aligned}
We know the range of cosx\cos x is [-1,1] . The value of 1+52=0.61\dfrac{-1+\sqrt{5}}{2}=0.61 and 152=1.61\dfrac{-1-\sqrt{5}}{2}=-1.61
We can see that 152\dfrac{-1-\sqrt{5}}{2} is not within [-1,1]. Hence, this value is neglected. Thus,
cosx=1+52...(i)\cos x=\dfrac{-1+\sqrt{5}}{2}...(i)
Now, let us again consider cosx+cos2x=1\cos x+{{\cos }^{2}}x=1
Let us take cos2x{{\cos }^{2}}x to RHS. We will get
cosx=1cos2x...(ii)\cos x=1-{{\cos }^{2}}x...(ii)
We know that
cos2x+sin2x=1 cos2x=1sin2x \begin{aligned} & {{\cos }^{2}}x+{{\sin }^{2}}x=1 \\\ & \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x \\\ \end{aligned}
Hence, we can write (ii) as
cosx=sin2x...(iii)\cos x={{\sin }^{2}}x...(iii)
Now, let’s consider sin4x+sin6x{{\sin }^{4}}x+{{\sin }^{6}}x .
We can write the above equation as shown below using the rule (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}
(sin2x)2+(sin2x)3{{\left( {{\sin }^{2}}x \right)}^{2}}+{{\left( {{\sin }^{2}}x \right)}^{3}}
From (iii), we can write the above equation as
(cosx)2+(cosx)3 =cos2x+cos3x \begin{aligned} & {{\left( \cos x \right)}^{2}}+{{\left( \cos x \right)}^{3}} \\\ & ={{\cos }^{2}}x+{{\cos }^{3}}x \\\ \end{aligned}
Let us take cos2x{{\cos }^{2}}x outside.
cos2x(1+cosx){{\cos }^{2}}x\left( 1+\cos x \right)
Let’s substitute the value of cosx\cos x from (i). We will get
(1+52)2(1+1+52){{\left( \dfrac{-1+\sqrt{5}}{2} \right)}^{2}}\left( 1+\dfrac{-1+\sqrt{5}}{2} \right)
Let us solve this.
(1+52)2(21+52) (1+52)2(1+52) \begin{aligned} & {{\left( \dfrac{-1+\sqrt{5}}{2} \right)}^{2}}\left( \dfrac{2-1+\sqrt{5}}{2} \right) \\\ & \Rightarrow {{\left( \dfrac{-1+\sqrt{5}}{2} \right)}^{2}}\left( \dfrac{1+\sqrt{5}}{2} \right) \\\ \end{aligned}
We can write the above equation as
(1+52)(1+52)(1+52)\left( \dfrac{-1+\sqrt{5}}{2} \right)\left( \dfrac{-1+\sqrt{5}}{2} \right)\left( \dfrac{1+\sqrt{5}}{2} \right)
We can rewrite the second and third terms as
(1+52)(512)(5+12)\left( \dfrac{-1+\sqrt{5}}{2} \right)\left( \dfrac{\sqrt{5}-1}{2} \right)\left( \dfrac{\sqrt{5}+1}{2} \right)
Let’s combine second and third terms.
(1+52)[(51)(5+1)4]\left( \dfrac{-1+\sqrt{5}}{2} \right)\left[ \dfrac{\left( \sqrt{5}-1 \right)\left( \sqrt{5}+1 \right)}{4} \right]
We know that a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) . Hence,

& \left( \dfrac{-1+\sqrt{5}}{2} \right)\left[ \dfrac{{{\left( \sqrt{5} \right)}^{2}}-{{1}^{2}}}{4} \right] \\\ & \Rightarrow \left( \dfrac{-1+\sqrt{5}}{2} \right)\left[ \dfrac{5-1}{4} \right] \\\ & \Rightarrow \left( \dfrac{-1+\sqrt{5}}{2} \right)\left[ \dfrac{4}{4} \right] \\\ \end{aligned}$$ Let us simplify this further. We will get $$\begin{aligned} & \left( \dfrac{-1+\sqrt{5}}{2} \right)1 \\\ & =\dfrac{-1+\sqrt{5}}{2} \\\ \end{aligned}$$ **Hence, the correct option is D.** **Note:** You may take ${{\cos }^{2}}x$ as the value of a in the equation ${{\cos }^{2}}x+\cos x-1=0$ and $\cos x$ as the value of b to substitute in $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ . This will lead to the wrong solution. It is important to check whether the value of $\cos x$ falls within its range. Also, rules of exponents must be known very well.