Solveeit Logo

Question

Question: If we have a trigonometric expression \({\text{cosec}}\theta + \cot \theta = {\text{P}}\) then the v...

If we have a trigonometric expression cosecθ+cotθ=P{\text{cosec}}\theta + \cot \theta = {\text{P}} then the value of cosθ\cos \theta is

Explanation

Solution

In this particular question use the concept that cosecx=1sinθ\cos ec x = \dfrac{1}{{\sin \theta }} and cotx=cosθsinθ\cot x = \dfrac{{\cos \theta }}{{\sin \theta }} so use these properties and try to simplify the given trigonometric equation by squaring on both sides and later on use standard trigonometric identity such as sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 to reach the solution of the question.

Complete step-by-step solution:
Given trigonometric equation is
cosecθ+cotθ=P{\text{cosec}}\theta + \cot \theta = {\text{P}}
Now as we know that cosecx=1sinθ\cos ec x =\dfrac{1}{{\sin \theta }} and cotx=cosθsinθ\cot x = \dfrac{{\cos \theta }}{{\sin \theta }}, so use these properties in the above equation we have,
1sinθ+cosθsinθ=P\Rightarrow \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }} = {\text{P}}
1+cosθsinθ=P\Rightarrow \dfrac{{1 + \cos \theta }}{{\sin \theta }} = {\text{P}}
Now squaring on both sides we have,
(1+cosθsinθ)2=P2\Rightarrow {\left( {\dfrac{{1 + \cos \theta }}{{\sin \theta }}} \right)^2} = {{\text{P}}^2}
((1+cosθ)2sin2θ)=P2\Rightarrow \left( {\dfrac{{{{\left( {1 + \cos \theta } \right)}^2}}}{{{{\sin }^2}\theta }}} \right) = {{\text{P}}^2}
Now as we know that sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 so, sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta so use this property in the above equation we have,
(1+cosθ)21cos2θ=P2\Rightarrow \dfrac{{{{\left( {1 + \cos \theta } \right)}^2}}}{{1 - {{\cos }^2}\theta }} = {{\text{P}}^2}
Now as we know that a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right) so we have,
(1+cosθ)2(1cosθ)(1+cosθ)=P2\Rightarrow \dfrac{{{{\left( {1 + \cos \theta } \right)}^2}}}{{\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)}} = {{\text{P}}^2}
(1+cosθ)(1cosθ)=P2\Rightarrow \dfrac{{\left( {1 + \cos \theta } \right)}}{{\left( {1 - \cos \theta } \right)}} = {{\text{P}}^2}
Now simplify it we have,
(1+cosθ)=P2(1cosθ)\Rightarrow \left( {1 + \cos \theta } \right) = {{\text{P}}^2}\left( {1 - \cos \theta } \right)
(1+cosθ)=P2P2cosθ\Rightarrow \left( {1 + \cos \theta } \right) = {{\text{P}}^2} - {{\text{P}}^2}\cos \theta
P2cosθ+cosθ=P21\Rightarrow {{\text{P}}^2}\cos \theta + \cos \theta = {{\text{P}}^2} - 1
cosθ(P2+1)=P21\Rightarrow \cos \theta \left( {{{\text{P}}^2} + 1} \right) = {{\text{P}}^2} - 1
cosθ=P21P2+1\Rightarrow \cos \theta = \dfrac{{{{\text{P}}^2} - 1}}{{{{\text{P}}^2} + 1}}
So this is the required value of the cosθ\cos \theta
So this is the required answer.

Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic standard trigonometric properties as well as identities which is all stated above, and always recall the common known fact that a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right), so apply this as above then simplify we will get the required answer.