Question
Question: If we have a trigonometric expression \[\dfrac{1}{{\tan 3A - \tan A}} - \dfrac{1}{{\cot 3A - \cot A}...
If we have a trigonometric expression tan3A−tanA1−cot3A−cotA1=kcot2A , then k is equal to
(A) 4
(B) 3
(C) 2
(D) 1
Solution
From the property of summation and subtraction we write that 2A=3A−A and then we apply tan on both the sides, we will get tan2A=tan(3A−A)=1+tanA×tan3Atan3A−tanA , now with the help of this identity we can find the value of the required variable k . At first we use the properties of trigonometry that is tanA=cotA1 i.e., cotA=tanA1 . After that we use the above formula and we find the correct option.
Complete step-by-step solution:
The given function tan3A−tanA1−cot3A−cotA1=kcot2A
Now we use the properties of trigonometry , that is cotA=cotA1 .
Therefore we have
tan3A−tanA1−tan3A1−tanA11=kcot2A
Simplifying the above equation and we get
⇒tan3A−tanA1−tan3A×tanAtanA−tan3A1=kcot2A
Here we use the property of division BA1=AB in the above equation and we get
⇒tan3A−tanA1−tanA−tan3Atan3A×tanA=kcot2A
We know that A−B=−(B−A)
Use this property in above equation and we get
⇒tan3A−tanA1+tan3A−tanAtan3A×tanA=kcot2A
Now we calculate and simplifying the above equation and we get
⇒tan3A−tanA1−tan3A×tanA=kcot2A
⇒1−tan3A×tanAtan3A−tanA1=kcot2A
Now we use the formula of tan i.e., tan(3A−A)=1+tanA×tan3Atan3A−tanA , and we get
⇒tan(3A−A)1=kcot2A
⇒tan2A1=kcot2A
⇒cot2A=kcot2A
Cancelling the similar term and we get
⇒1=k
i.e., k=1
Therefore the value of k is 1
Option (D) is correct.
Note: We can also solve the given problem by using other properties and formulas of trigonometry. We use the property of trigonometry that is tanA=cosAsinA and cotA=sinAcosA and also we use use the formulas of trigonometry , that is sin(3A−A)=sin3AcosA−cos3AsinA and cos(3A−A)=cos3AcosA+sin3AsinA .
At first we use the property and we get
cos3Asin3A−cosAsinA1−sin3Acos3A−sinAcosA1=kcot2A
Now simply this equation and we get
⇒cos3A×cosAsin3AcosA−cos3AsinA1−sin3A×sinAcos3AsinA−sin3AcosA1=kcot2A
⇒sin3AcosA−cos3AsinAcos3A×cosA+sin3AcosA−cos3AsinAsin3A×sinA=kcot2A
Now we use the formula of sin of trigonometry and we get
⇒sin(3A−A)cos3A×cosA+sin(3A−A)sin3A×sinA=kcot2A
⇒sin2Acos3A×cosA+sin2Asin3A×sinA=kcot2A
Again we simplify this equation and we get
⇒sin2Acos3A×cosA+sin3A×sinA=kcot2A
Use the formula of cos of trigonometry and we get
⇒sin2Acos(3A−A)=kcot2A
⇒sin2Acos2A=kcot2A
⇒cot2A=kcot2A
Canceling the similar term and we get
⇒1=k
i.e., k=1
Therefore, Option (D) is correct.