Solveeit Logo

Question

Question: If we have a trigonometric expression \[\dfrac{1}{{\tan 3A - \tan A}} - \dfrac{1}{{\cot 3A - \cot A}...

If we have a trigonometric expression 1tan3AtanA1cot3AcotA=kcot2A\dfrac{1}{{\tan 3A - \tan A}} - \dfrac{1}{{\cot 3A - \cot A}} = k\cot 2A , then kk is equal to
(A) 44
(B) 33
(C) 22
(D) 11

Explanation

Solution

From the property of summation and subtraction we write that 2A=3AA2A = 3A - A and then we apply tan\tan on both the sides, we will get tan2A=tan(3AA)=tan3AtanA1+tanA×tan3A\tan 2A = \tan (3A - A) = \dfrac{{\tan 3A - \tan A}}{{1 + \tan A \times \tan 3A}} , now with the help of this identity we can find the value of the required variable kk . At first we use the properties of trigonometry that is tanA=1cotA\tan A = \dfrac{1}{{\cot A}} i.e., cotA=1tanA\cot A = \dfrac{1}{{\tan A}} . After that we use the above formula and we find the correct option.

Complete step-by-step solution:
The given function 1tan3AtanA1cot3AcotA=kcot2A\dfrac{1}{{\tan 3A - \tan A}} - \dfrac{1}{{\cot 3A - \cot A}} = k\cot 2A
Now we use the properties of trigonometry , that is cotA=1cotA\cot A = \dfrac{1}{{\cot A}} .
Therefore we have
1tan3AtanA11tan3A1tanA=kcot2A\dfrac{1}{{\tan 3A - \tan A}} - \dfrac{1}{{\dfrac{1}{{\tan 3A}} - \dfrac{1}{{\tan A}}}} = k\cot 2A
Simplifying the above equation and we get
1tan3AtanA1tanAtan3Atan3A×tanA=kcot2A\Rightarrow \dfrac{1}{{\tan 3A - \tan A}} - \dfrac{1}{{\dfrac{{\tan A - \tan 3A}}{{\tan 3A \times \tan A}}}} = k\cot 2A
Here we use the property of division 1AB=BA\dfrac{1}{{\dfrac{A}{B}}} = \dfrac{B}{A} in the above equation and we get
1tan3AtanAtan3A×tanAtanAtan3A=kcot2A\Rightarrow \dfrac{1}{{\tan 3A - \tan A}} - \dfrac{{\tan 3A \times \tan A}}{{\tan A - \tan 3A}} = k\cot 2A
We know that AB=(BA)A - B = - (B - A)
Use this property in above equation and we get
1tan3AtanA+tan3A×tanAtan3AtanA=kcot2A\Rightarrow \dfrac{1}{{\tan 3A - \tan A}} + \dfrac{{\tan 3A \times \tan A}}{{\tan 3A - \tan A}} = k\cot 2A
Now we calculate and simplifying the above equation and we get
1tan3A×tanAtan3AtanA=kcot2A\Rightarrow \dfrac{{1 - \tan 3A \times \tan A}}{{\tan 3A - \tan A}} = k\cot 2A
1tan3AtanA1tan3A×tanA=kcot2A\Rightarrow \dfrac{1}{{\dfrac{{\tan 3A - \tan A}}{{1 - \tan 3A \times \tan A}}}} = k\cot 2A
Now we use the formula of tan\tan i.e., tan(3AA)=tan3AtanA1+tanA×tan3A\tan (3A - A) = \dfrac{{\tan 3A - \tan A}}{{1 + \tan A \times \tan 3A}} , and we get
1tan(3AA)=kcot2A\Rightarrow \dfrac{1}{{\tan (3A - A)}} = k\cot 2A
1tan2A=kcot2A\Rightarrow \dfrac{1}{{\tan 2A}} = k\cot 2A
cot2A=kcot2A\Rightarrow \cot 2A = k\cot 2A
Cancelling the similar term and we get
1=k\Rightarrow 1 = k
i.e., k=1k = 1
Therefore the value of kk is 11
Option (D) is correct.

Note: We can also solve the given problem by using other properties and formulas of trigonometry. We use the property of trigonometry that is tanA=sinAcosA\tan A = \dfrac{{\sin A}}{{\cos A}} and cotA=cosAsinA\cot A = \dfrac{{\cos A}}{{\sin A}} and also we use use the formulas of trigonometry , that is sin(3AA)=sin3AcosAcos3AsinA\sin (3A - A) = \sin 3A\cos A - \cos 3A\sin A and cos(3AA)=cos3AcosA+sin3AsinA\cos (3A - A) = \cos 3A\cos A + \sin 3A\sin A .
At first we use the property and we get
1sin3Acos3AsinAcosA1cos3Asin3AcosAsinA=kcot2A\dfrac{1}{{\dfrac{{\sin 3A}}{{\cos 3A}} - \dfrac{{\sin A}}{{\cos A}}}} - \dfrac{1}{{\dfrac{{\cos 3A}}{{\sin 3A}} - \dfrac{{\cos A}}{{\sin A}}}} = k\cot 2A
Now simply this equation and we get
1sin3AcosAcos3AsinAcos3A×cosA1cos3AsinAsin3AcosAsin3A×sinA=kcot2A\Rightarrow \dfrac{1}{{\dfrac{{\sin 3A\cos A - \cos 3A\sin A}}{{\cos 3A \times \cos A}}}} - \dfrac{1}{{\dfrac{{\cos 3A\sin A - \sin 3A\cos A}}{{\sin 3A \times \sin A}}}} = k\cot 2A
cos3A×cosAsin3AcosAcos3AsinA+sin3A×sinAsin3AcosAcos3AsinA=kcot2A\Rightarrow \dfrac{{\cos 3A \times \cos A}}{{\sin 3A\cos A - \cos 3A\sin A}} + \dfrac{{\sin 3A \times \sin A}}{{\sin 3A\cos A - \cos 3A\sin A}} = k\cot 2A
Now we use the formula of sin of trigonometry and we get
cos3A×cosAsin(3AA)+sin3A×sinAsin(3AA)=kcot2A\Rightarrow \dfrac{{\cos 3A \times \cos A}}{{\sin (3A - A)}} + \dfrac{{\sin 3A \times \sin A}}{{\sin (3A - A)}} = k\cot 2A
cos3A×cosAsin2A+sin3A×sinAsin2A=kcot2A\Rightarrow \dfrac{{\cos 3A \times \cos A}}{{\sin 2A}} + \dfrac{{\sin 3A \times \sin A}}{{\sin 2A}} = k\cot 2A
Again we simplify this equation and we get
cos3A×cosA+sin3A×sinAsin2A=kcot2A\Rightarrow \dfrac{{\cos 3A \times \cos A + \sin 3A \times \sin A}}{{\sin 2A}} = k\cot 2A
Use the formula of cos of trigonometry and we get
cos(3AA)sin2A=kcot2A\Rightarrow \dfrac{{\cos (3A - A)}}{{\sin 2A}} = k\cot 2A
cos2Asin2A=kcot2A\Rightarrow \dfrac{{\cos 2A}}{{\sin 2A}} = k\cot 2A
cot2A=kcot2A\Rightarrow \cot 2A = k\cot 2A
Canceling the similar term and we get
1=k\Rightarrow 1 = k
i.e., k=1k = 1
Therefore, Option (D) is correct.