Solveeit Logo

Question

Question: If we have a trigonometric expression as \(\sin \theta =\operatorname{Sin}\alpha \) , then: A. \(\...

If we have a trigonometric expression as sinθ=Sinα\sin \theta =\operatorname{Sin}\alpha , then:
A. θ+α2\dfrac{\theta +\alpha }{2} is any odd multiple of π2\dfrac{\pi }{2} and θα2\dfrac{\theta -\alpha }{2} is any multiple of π\pi .
B. θ+α2\dfrac{\theta +\alpha }{2}is any even multiple of π2\dfrac{\pi }{2} and θα2\dfrac{\theta -\alpha }{2} is any odd multiple of π\pi .
C. θ+α2\dfrac{\theta +\alpha }{2}is any multiple of π2\dfrac{\pi }{2} and θα2\dfrac{\theta -\alpha }{2} is any odd multiple of π\pi .
D. θ+α2\dfrac{\theta +\alpha }{2}is any multiple of π2\dfrac{\pi }{2} and θα2\dfrac{\theta -\alpha }{2} is any even multiple of π\pi .

Explanation

Solution

Take sinα\sin \alpha to LHS and then apply the formula “sinCsinD=2sin(CD2)cos(C+D2)\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)“. In the obtained equation to get 2sin(θα2)cos(θ+α2)=02\sin \left( \dfrac{\theta -\alpha }{2} \right)\cos \left( \dfrac{\theta +\alpha }{2} \right)=0. Now solve this equation to get values of θα2\dfrac{\theta -\alpha }{2} and θ+α2\dfrac{\theta +\alpha }{2} .

Complete step-by-step solution:
Given sinθ=Sinα\sin \theta =\operatorname{Sin}\alpha
Taking all the terms to LHS, we will get,
sinθsinα=0\sin \theta -\sin \alpha =0 ………………………. (1)
We know that: sinCsinD=2sin(CD2)cos(C+D2)\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right).
Using this formula in equation (1), we will get,
2sin(θα2)cos(θ+α2)=02\sin \left( \dfrac{\theta -\alpha }{2} \right)\cos \left( \dfrac{\theta +\alpha }{2} \right)=0 .
Dividing both sides of the equation by 2, we will get,
sin(θα2)cos(θ+α2)=0\Rightarrow \sin \left( \dfrac{\theta -\alpha }{2} \right)\cos \left( \dfrac{\theta +\alpha }{2} \right)=0
Either sin(θα2)=0\sin \left( \dfrac{\theta -\alpha }{2} \right)=0 or cos(θ+α2)=0\cos \left( \dfrac{\theta +\alpha }{2} \right)=0 .
Let us first solve sin(θα2)=0\sin \left( \dfrac{\theta -\alpha }{2} \right)=0 .
We know that sin(0)=0\sin \left( 0 \right)=0 .
So, sin(θα2)=sin(0)\sin \left( \dfrac{\theta -\alpha }{2} \right)=\sin \left( 0 \right) .
We know that the general solution of siny=sinx\sin y=\sin x is x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y .
On putting x=(θα)2x=\dfrac{\left( \theta -\alpha \right)}{2} and y=0y=0 we will get –
θα2=nπ0\Rightarrow \dfrac{\theta -\alpha }{2}=n\pi -0
So, θα2=nπ\dfrac{\theta -\alpha }{2}= n\pi
Now let us solve cos(θ+α2)=0\cos \left( \dfrac{\theta +\alpha }{2} \right)=0 .
We know that cos(π2)=0\cos \left( \dfrac{\pi }{2} \right)=0 .
So, cos(θ+α2)=cos(π2)\cos \left( \dfrac{\theta +\alpha }{2} \right)=\cos \left( \dfrac{\pi }{2} \right) .
We know that the general solution of cosy=cosx\cos y=\cos x is y=x+2nπy=x+2n\pi .
Where ‘n’ is an integer.
So, general solution of cos(θ+α2)=cos(π2)\cos \left( \dfrac{\theta +\alpha }{2} \right)=\cos \left( \dfrac{\pi }{2} \right) is

& \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}+2n\pi \\\ & \Rightarrow \dfrac{\theta -\alpha }{2}=\dfrac{\pi }{2}+2n\pi \\\ \end{aligned}$$ Taking $\left( \dfrac{\pi }{2} \right)$ in RHS, we will get, $\Rightarrow \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}\left( 1+4n \right)$ So, for equation (1) to hold, Two possible cases, Case: 1 $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0$ . From above solution, we have got, $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0\Rightarrow \dfrac{\theta -\alpha }{2}=n\pi $ . i.e. $\dfrac{\theta -\alpha }{2}$ is a multiple of $\pi $ . Case: 2 $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ . Form above solution, we have got that, $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0\Rightarrow \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}\left( 4n+1 \right)$ . i.e. $\dfrac{\theta +\alpha }{2}$ is an odd multiple of $\dfrac{\pi }{2}$ . **Hence option (A) is the correct answer.** **Note:** In the solution, we have used the general solution of $\sin y=\sin x$ is $x=n\pi +{{\left( -1 \right)}^{n}}y$ We can prove this as follows: $\sin x=\sin y$ So, $x=2k\pi +y$ or $x=2k\pi +\pi -y$ $\Rightarrow x=2k\pi +y$ or $x=\left( 2k+1 \right)\pi -y$ $\Rightarrow x=2k\pi +\left( -1 \right)2ky$ or $x=\left( 2k+1 \right)\pi +\left( -1 \right)2k+1y$ $\Rightarrow x=n\pi +\left( -1 \right)ny$ Where, n is any integer i.e. $n=0,\pm 1,\pm 2,\pm 3............$