Question
Question: If we have a trigonometric expression as \(\sin \theta +\cos \theta =m\), then value of \(\sin \thet...
If we have a trigonometric expression as sinθ+cosθ=m, then value of sinθ−cosθ is
A. 2+m2
B. m
C. 2+2m
D. 2−m2
Solution
We first take the square of the given expression sinθ+cosθ=m and use the identity sin2θ+cos2θ=1. We find the value of −2sinθcosθ. Then we add 1 and change it to the square of sinθ−cosθ. The square root gives the solution.
Complete step-by-step solution:
We first take the square of sinθ+cosθ=m. We have the identity sin2θ+cos2θ=1.
(sinθ+cosθ)2=m2⇒sin2θ+cos2θ+2sinθcosθ=m2
Simplifying we get
sin2θ+cos2θ+2sinθcosθ=m2⇒1+2sinθcosθ=m2⇒2sinθcosθ=m2−1
We now multiply with −1 to get
2sinθcosθ=m2−1⇒−2sinθcosθ=1−m2
Now adding 1 on both sides we get 1−2sinθcosθ=1+1−m2=2−m2.
We use the identity sin2θ+cos2θ=1.
1−2sinθcosθ=2−m2⇒sin2θ+cos2θ−2sinθcosθ=2−m2⇒(sinθ−cosθ)2=2−m2
We now take the square root to get
(sinθ−cosθ)2=2−m2⇒sinθ−cosθ=±2−m2
The correct option is D.
Note: We cannot use the algebraic identity of (sinθ+cosθ)2=(sinθ−cosθ)2+4sinθcosθ as the value of sinθcosθ is unknown. Therefore, we used the identity sin2θ+cos2θ=1 to first find the unknown value and then change to the form of (sinθ−cosθ)2.