Question
Question: if we have a trigonometric expression as \([{{\cot }^{-1}}x]+[{{\cos }^{-1}}x]=0\) , where [ . ] den...
if we have a trigonometric expression as [cot−1x]+[cos−1x]=0 , where [ . ] denotes greatest integer function, then the complete set of values of x is
( a ) (cos1, 1]
( b ) ( cos1, - cos1)
( c ) (cot1, 1]
( d ) none of these
Solution
What we will do is we will first draw the graph of cos−1x and cot−1x using concept of greatest integer function. Then we will first see for what values of x, cos−1x and cot−1x is equals to zero. Then we will take intersection of set of domain of values of x for [cos−1x]=0 and [cot−1x]=0.
Complete step-by-step solution:
Before we start the question, let us see what is the greatest integer function and what are its properties.
Function y = [ x ] is called greatest integer function which means the greatest integer less than or equals to x. also, if n belongs to set of integer, then y = [ x ] = n if n≤xForexampleifweputx=−3.1iny=[x],theny=−4andifweputx=0.2iny=[x],theny=0.Graphofy=[x]isgivenas,Graphofy=[{{\cot }^{-1}}x]isgivenas,Graphofy=[{{\cos }^{-1}}x]isgivenasNow,inquestionitisgiventhat[{{\cot }^{-1}}x]+[{{\cos }^{-1}}x]=0Now,weknowthatrangeof{{\cos }^{-1}}xis0\le {{\cos }^{-1}}x\le \pi .Sofromseeingtherangeof{{\cos }^{-1}}x,wecansaythat{{\cos }^{-1}}xisalwayspositiveforallvaluesofx.wherexbelongstoasetofrealnumbers.Also,weknowthatrangeof{{\cot }^{-1}}xis0<{{\cot }^{-1}}x\le \pi .Sofromseeingtherangeof{{\cot }^{-1}}x,wecansaythat{{\cos }^{-1}}xisalwayspositiveforallvaluesofx.wherexbelongstoasetofrealnumbers.Nowfor,valuesof{{\cot }^{-1}}xand{{\cos }^{-1}}x,[{{\cot }^{-1}}x]+[{{\cos }^{-1}}x]=0istruewhenboth[{{\cot }^{-1}}x]and[{{\cos }^{-1}}x]areequalstozero.Now,fromgraphof[{{\cos }^{-1}}x],[{{\cos }^{-1}}x]isalwayszeroforvaluesbetweencos1and1thatis,[{{\cos }^{-1}}x]=0;x\in (\cos 1,1]….(i)Now,fromgraphof[{{\cot }^{-1}}x],[{{\cot }^{-1}}x]isalwayszeroforvaluesbetweencot1and\infty thatis,[{{\cot }^{-1}}x]=0;x\in (\cot 1,\infty )……(ii)Takingintersectionofequation(i)and(ii)So,setofallvaluesxforwhich[{{\cot }^{-1}}x]+[{{\cos }^{-1}}x]=0isx\in (\cot 1,1]$
Hence, option ( c ) is true.
Note: For finding domain of functions which are formed by combination of some function of x and greatest integer function, knowledge of graph is must. If we have f(x)=f1(x)+f2(x) , then domain of f(x) is equals to domain of f1(x)∩f2(x).