Solveeit Logo

Question

Question: if we have a trigonometric expression as \([{{\cot }^{-1}}x]+[{{\cos }^{-1}}x]=0\) , where [ . ] den...

if we have a trigonometric expression as [cot1x]+[cos1x]=0[{{\cot }^{-1}}x]+[{{\cos }^{-1}}x]=0 , where [ . ] denotes greatest integer function, then the complete set of values of x is
( a ) (cos1, 1]
( b ) ( cos1, - cos1)
( c ) (cot1, 1]
( d ) none of these

Explanation

Solution

What we will do is we will first draw the graph of cos1x{{\cos }^{-1}}x and cot1x{{\cot }^{-1}}x using concept of greatest integer function. Then we will first see for what values of x, cos1x{{\cos }^{-1}}x and cot1x{{\cot }^{-1}}x is equals to zero. Then we will take intersection of set of domain of values of x for [cos1x]=0[{{\cos }^{-1}}x]=0 and [cot1x]=0[{{\cot }^{-1}}x]=0.

Complete step-by-step solution:
Before we start the question, let us see what is the greatest integer function and what are its properties.
Function y = [ x ] is called greatest integer function which means the greatest integer less than or equals to x. also, if n belongs to set of integer, then y = [ x ] = n if nxForexampleifweputx=3.1iny=[x],theny=4andifweputx=0.2iny=[x],theny=0.Graphofy=[x]isgivenas,![](https://www.vedantu.com/questionsets/1b9f398a2b674996ba972953b458e63c7458760784246455788.png)Graphofn\le xFor example if we put x = -3.1 in y = [ x ], then y = - 4 and if we put x = 0.2 in y = [ x ], then y = 0. Graph of y = [ x ] is given as, ![](https://www.vedantu.com/question-sets/1b9f398a-2b67-4996-ba97-2953b458e63c7458760784246455788.png) Graph of y=[{{\cot }^{-1}}x]isgivenas,![](https://www.vedantu.com/questionsets/d4a9400515814fb498163af8f25b43e51705978681462297754.png)Graphofis given as, ![](https://www.vedantu.com/question-sets/d4a94005-1581-4fb4-9816-3af8f25b43e51705978681462297754.png) Graph ofy=[{{\cos }^{-1}}x]isgivenas![](https://www.vedantu.com/questionsets/69c7d3cad9334b04ace545c242c59e7d6588586580695303219.png)Now,inquestionitisgiventhatis given as ![](https://www.vedantu.com/question-sets/69c7d3ca-d933-4b04-ace5-45c242c59e7d6588586580695303219.png) Now, in question it is given that[{{\cot }^{-1}}x]+[{{\cos }^{-1}}x]=0Now,weknowthatrangeof Now, we know that range of{{\cos }^{-1}}xisis0\le {{\cos }^{-1}}x\le \pi .Sofromseeingtherangeof. So from seeing the range of {{\cos }^{-1}}x,wecansaythat, we can say that {{\cos }^{-1}}xisalwayspositiveforallvaluesofx.wherexbelongstoasetofrealnumbers.Also,weknowthatrangeofis always positive for all values of x. where x belongs to a set of real numbers. Also, we know that range of{{\cot }^{-1}}xisis0<{{\cot }^{-1}}x\le \pi .Sofromseeingtherangeof. So from seeing the range of {{\cot }^{-1}}x,wecansaythat, we can say that {{\cos }^{-1}}xisalwayspositiveforallvaluesofx.wherexbelongstoasetofrealnumbers.Nowfor,valuesofis always positive for all values of x. where x belongs to a set of real numbers. Now for, values of{{\cot }^{-1}}xandand{{\cos }^{-1}}x,, [{{\cot }^{-1}}x]+[{{\cos }^{-1}}x]=0istruewhenbothis true when both [{{\cot }^{-1}}x]andand[{{\cos }^{-1}}x]areequalstozero.Now,fromgraphofare equals to zero. Now, from graph of[{{\cos }^{-1}}x],, [{{\cos }^{-1}}x]isalwayszeroforvaluesbetweencos1and1thatis,is always zero for values between cos1 and 1 that is, [{{\cos }^{-1}}x]=0;x\in (\cos 1,1].(i)Now,fromgraphof….( i ) Now, from graph of [{{\cot }^{-1}}x],, [{{\cot }^{-1}}x]isalwayszeroforvaluesbetweencot1andis always zero for values between cot1 and\infty thatis,that is, [{{\cot }^{-1}}x]=0;x\in (\cot 1,\infty )(ii)Takingintersectionofequation(i)and(ii)So,setofallvaluesxforwhich……( ii ) Taking intersection of equation ( i ) and ( ii ) So, set of all values x for which [{{\cot }^{-1}}x]+[{{\cos }^{-1}}x]=0isisx\in (\cot 1,1]$
Hence, option ( c ) is true.

Note: For finding domain of functions which are formed by combination of some function of x and greatest integer function, knowledge of graph is must. If we have f(x)=f1(x)+f2(x)f(x)={{f}_{1}}(x)+{{f}_{2}}(x) , then domain of f(x) is equals to domain of f1(x)f2(x){{f}_{1}}(x)\cap {{f}_{2}}(x).