Solveeit Logo

Question

Question: If we have a trigonometric expression as \(3\sin x+4\cos x=5\) , then \(6\tan \dfrac{x}{2}-9{{\tan }...

If we have a trigonometric expression as 3sinx+4cosx=53\sin x+4\cos x=5 , then 6tanx29tan2x2=6\tan \dfrac{x}{2}-9{{\tan }^{2}}\dfrac{x}{2}=
( a ) 0
( b ) 1
( c ) 3
( d ) 4

Explanation

Solution

In question it is asked that, we If 3sinx+4cosx=53\sin x+4\cos x=5 , then 6tanx29tan2x26\tan \dfrac{x}{2}-9{{\tan }^{2}}\dfrac{x}{2} is equals to what value. So, to do so we will use identities and properties of trigonometric ratios such as tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A} and sinA=1cosecA\sin A=\dfrac{1}{\cos ecA} so as to obtain the 3tanA=4sinA3\tan A=4\sin A in terms of cot A and cosec A .

Complete step-by-step solution:
We know that sinA\sin A, cosA\cos A, tanA\tan A, cotA\cot A, secA\sec A, and cosecA\cos ec A are trigonometric function, where A is the angle made by the hypotenuse with the base of the triangle.
Now, in question it is given that 3sinx+4cosx=53\sin x+4\cos x=5 .
Now, also we know that sin x can be written in terms of tanx2\tan \dfrac{x}{2} function that is equals to 2tanx21+tan2x2\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} and cosx\cos x can be written in terms of tanx2\tan \dfrac{x}{2} function that is equals to 1tan2x21+tan2x2\dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} .
so, we can write 3sinx+4cosx=53\sin x+4\cos x=5 in terms of tanx2\tan \dfrac{x}{2} by putting sinx=2tanx21+tan2x2\sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} and cosx=1tan2x21+tan2x2\cos x=\dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}
we get,
3(2tanx21+tan2x2)+4(1tan2x21+tan2x2)=53\left( \dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right)+4\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right)=5
Taking L.C.M, we get
3(2tanx2)+4(1tan2x2)1+tan2x2=5\dfrac{3\left( 2\tan \dfrac{x}{2} \right)+4\left( 1-{{\tan }^{2}}\dfrac{x}{2} \right)}{1+{{\tan }^{2}}\dfrac{x}{2}}=5
Taking 1+tan2x21+{{\tan }^{2}}\dfrac{x}{2} from the denominator of left hand side to numerator of right hand side, using cross multiplication, we get
3(2tanx2)+4(1tan2x2)=5(1+tan2x2)3\left( 2\tan \dfrac{x}{2} \right)+4\left( 1-{{\tan }^{2}}\dfrac{x}{2} \right)=5\cdot \left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)
Opening brackets on left side and right hand side, we get
6tanx2+44tan2x2=5+5tan2x26\tan \dfrac{x}{2}+4-4{{\tan }^{2}}\dfrac{x}{2}=5+5{{\tan }^{2}}\dfrac{x}{2}
Shifting all values of left hand side to right hand side we get,
9tan2x26tanx2+1=09{{\tan }^{2}}\dfrac{x}{2}-6\tan \dfrac{x}{2}+1=0
Shifting 1 from left hand side to right hand side, we get
9tan2x26tanx2=19{{\tan }^{2}}\dfrac{x}{2}-6\tan \dfrac{x}{2}=-1
Taking-1 common from the terms of left hand side we get
(6tanx29tan2x2)=1-\left( 6\tan \dfrac{x}{2}-9{{\tan }^{2}}\dfrac{x}{2} \right)=-1
Cancelling negative sign from left hand side with negative sign on right hand side we get,
(6tanx29tan2x2)=1\left( 6\tan \dfrac{x}{2}-9{{\tan }^{2}}\dfrac{x}{2} \right)=1
Hence, option ( b ) is correct.

Note: One must know all trigonometric identities which are cos2x+sin2x=1{{\cos }^{2}}x+{{\sin }^{2}}x=1, 1+tan2x=sec2x1+{{\tan }^{2}}x={{\sec }^{2}}x and 1+cot2x=cosec2x1+{{\cot }^{2}}x=\cos e{{c}^{2}}x, properties and relation between trigonometric functions such as tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A}, cotA=cosAsinA\cot A=\dfrac{\cos A}{\sin A}, sinA=1cosecA\sin A=\dfrac{1}{\cos ecA}, cotA=1tanA\cot A=\dfrac{1}{\tan A} . While solving the question always use the most appropriate substitution of trigonometric relation which directly leads to result. There may be calculation mistake in cross multiplication, so be careful while solving an expression.