Solveeit Logo

Question

Question: If we have a trigonometric equation \(\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\...

If we have a trigonometric equation secθtanθsecθ+tanθ=14\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\dfrac{1}{4} , then find the value of sinθ\sin \theta .

Explanation

Solution

In question it is asked that, we have to find the value of sinθ\sin \theta given that secθtanθsecθ+tanθ=14\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\dfrac{1}{4}.
So, to do so we will use identities and properties of trigonometric ratios such as tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } so as to obtain the sinθ\sin \theta .

Complete step-by-step solution:
We know that sin θ , cos θ , tan θ , cot θ , sec θ and cosec θsin\text{ }\theta \text{ },\text{ }cos\text{ }\theta \text{ },\text{ }tan\text{ }\theta \text{ },\text{ }cot\text{ }\theta \text{ },\text{ }sec\text{ }\theta \text{ }and\text{ }cosec\text{ }\theta are trigonometric function, where θ\theta is the angle made by the hypotenuse with the base of triangle.
Now, in question it is given that secθtanθsecθ+tanθ=14\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\dfrac{1}{4}.
Now, also we know that tan A equal to the ratio of the sine function and cos A function that is tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A}.
And, also secθsec\theta is equals to reciprocal of trigonometric function cosθ\cos \theta that is secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }.
so, we can write secθtanθsecθ+tanθ=14\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\dfrac{1}{4} as,
1cosθsinAcosA1cosθ+sinAcosA=14\dfrac{\dfrac{1}{\cos \theta }-\dfrac{\sin A}{\cos A}}{\dfrac{1}{\cos \theta }+\dfrac{\sin A}{\cos A}}=\dfrac{1}{4}.
On taking L.C.M in numerator an denominator, we get
1sinθcosθ1+sinθcosθ=14\dfrac{\dfrac{1-\sin \theta }{\cos \theta }}{\dfrac{1+\sin \theta }{\cos \theta }}=\dfrac{1}{4}
Taking 4 from the denominator of right hand side to numerator of left hand side, 1+sinθcosθ\dfrac{1+\sin \theta }{\cos \theta } from numerator of right hand side of left hand side to denominator of right hand side using cross multiplication, we get
4(1sinθcosθ)=1+sinθcosθ4\cdot \left( \dfrac{1-\sin \theta }{\cos \theta } \right)=\dfrac{1+\sin \theta }{\cos \theta }……………........( i )
On solving brackets,
44sinθcosθ=1+sinθcosθ\dfrac{4-4\sin \theta }{\cos \theta }=\dfrac{1+\sin \theta }{\cos \theta }
On simplifying equation, we get
44sinθ=1+sinθ4-4\sin \theta =1+\sin \theta
Taking, 4sinθ4\sin \theta from left hand side to right hand side and 1 from right hand side to left hand side,
41=sinθ+4sinθ4-1=\sin \theta +4\sin \theta
On solving, we get
3=5sinθ3=5\sin \theta
Taking, 4 from the numerator of right hand side to denominator of left hand side, we get
sinθ=35\sin \theta =\dfrac{3}{5}
Hence, if secθtanθsecθ+tanθ=14\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\dfrac{1}{4} , then the value of sinθ\sin \theta is equals to 35\dfrac{3}{5}.

Note: One must know all trigonometric identities, properties, and relationships between trigonometric functions. While solving the question always use the most appropriate substitution of trigonometric relation which directly leads to the result. There may be calculation mistakes in cross multiplication, so be careful while solving an expression.